传感器论文范文大全

2022-11-02 来源:其他范文收藏下载本文

推荐第1篇:机器人传感器论文

机器人技术基础论文

学校: 班级: 学生:

机器人传感器

摘要:

机器人的控制系统相当于人类大脑,执行机构相当于人类四肢,传感器相当于人类的五官。因此,要让机器人像人一样接收和处理外界信息,机器人传感器技术是机器人智能化的重要体现。 Abstract:

Robot control system is equivalent to the human brain, actuators equivalent to human limbs, sensor is equivalent to the human facial features.Therefore, to make robots like people receive and proce information from outside, robot sensor technology is the important embodiment of intelligent robots.关键词:机器人 传感器 内部 外部

正文:

传感器是机器人完成感觉的必要手段,通过传感器的感觉作用,将机器人自身的相关特性或相关物体的特性转化为机器人执行某项功能时所需要的信息。根据传感器在机器人上应用的目的和使用范围不同,可分为内部传感器和外部传感器。

内部传感器用于检测机器人自身状态(如手臂间角度、机器人运动工程中的位置、速度和加速度等);外部传感器用于检测机器人所处的外部环境和对象状况等,如抓取对象的形状、空间位置、有没有障碍、物体是否滑落等。

机器人用内、外传感器分类

传感器 位置 速度 加速度 检测内容 位置、角度 速度 加速度 接触 把握力 荷重

触觉 分布压力 多元力 力矩 滑动 接近

接近觉 间隔 倾斜平面位置

视觉 距离 形状 缺陷

听觉 嗅觉 味觉 声音 超声波 气体成分 味道

检测器件

电位器、直线感应同步器 角度式电位器、光电编码器 测速发电机、增量式码盘 压电式加速度传感器 压阻式加速度传感器 限制开关

应变计、半导体感压元件 弹簧变位测量器

导电橡胶、感压高分子材料 应变计、半导体感压元件 压阻元件、马达电流计 光学旋转检测器、光纤

应用

位置移动检测 角度变化检测 速度检测 加速度检测 动作顺序控制 把握力控制

张力控制、指压控制 姿势、形状判别 装配力控制 协调控制 滑动判定、力控制

光电开关、LED、红外、激光 动作顺序控制 光电晶体管、光电二极管 电磁线圈、超声波传感器 摄像机、位置传感器 测距仪 线图像传感器 画图像传感器 麦克风 超声波传感器

气体传感器、射线传感器 离子敏感器、PH计

障碍物躲避

轨迹移动控制、探索 位置决定、控制 移动控制 物体识别、判别 检查,异常检测 语言控制(人机接口) 导航 化学成分探测

机器人传感器的要求和选择

机器人传感器的选择取决于机器人工作需要和应用特点,对机器人感觉系统的要求时选择传感器的基本依据。 机器人传感器的选择的一般要求:

 精度高、重复性好;  稳定性和可靠性好;  抗干扰能力强;

 重量轻、体积小、安装方便。

内部传感器

位移传感器

按照位移的特征,可分为线位移和角位移。

线位移是指机构沿着某一条直线运动的距离,角位移是指机构沿某一定点转动的角度。 (1)电位器式位移传感器

电位器式位移传感器由一个线绕电阻(或薄膜电阻)和一个滑动触点组成。其中滑动触点通过机械装置受被检测量的控制。当被检测的位置量发生变化时,滑动触点也发生位移,从而改变了滑动触点与电位器各端之间的电阻值和输出电压值,根据这种输出电压值的变化,可以检测出机器人各关节的位置和位移量。 (2)直线型感应同步器

直线感应同步器的组成是由定尺和滑尺组成。定尺和滑尺间保证与一定的间隙,一般为0.25mm左右。在定尺上用铜箔制成单项均匀分布的平面连续绕组,滑尺上用铜箔制成平面分段绕组。绕组和基板之间有一厚度为0.1mm的绝缘层,在绕组的外面也有一层绝缘层,为了防止静电感应,在滑尺的外边还粘贴一层铝箔。定尺固定在设备上不动,滑尺则可以再定尺表面来回移动。 (3)圆形感应同步器

圆形感应同步器主要用于测量角位移。它由钉子和转子两部分组成。在转子上分布着连续绕组,绕组的导片是沿圆周的径向分布的。在定子上分布着两相扇形分段绕组。定子和转子的截面构造与直线型同步器是一样的,为了防止静电感应,在转子绕组的表面粘贴一层铝箔 绝对速度传感器

绝对速度传感器,图4-11为国产CD-1型绝对速度传感器的结构图。途中磁钢6借铝架5固定在壳体4内,并通过壳体形成磁回路。线圈2和阻尼环3安装在芯杆2上,芯杆用弹簧1和8支承在壳体内,构成传感器的活动部分。当传感器的壳体与振动物体一起振动时,如振动的频率较高,由于芯杆组件的质量很大,故产生的惯性力也大,可以阻止芯杆随壳体一起运动。当振动频率高到一定程度时,可以认为芯杆组件基本不动,只是壳体随被测物体振动。这时,线圈以物体的振动速度切割磁力线而在线圈两端产生感应电压。并且线圈输出的电压与线圈相对可替代运动速度成正比。当振动速度高到一定程度时,线圈与壳体的相对速度就是被测振动物体的绝对速度。 加速度传感器

电动式速度传感器的结构它由轭铁。永久磁铁、线圈及支承弹簧所组成。由电磁感应定律可知,穿过线圈的磁通量随时间变化时,在线圈两端将产生与磁通量中减少速率成正比的电压U,可表示为:

Ud dt如果线圈沿着与磁场垂直的方向运动,在线圈中便可产生与线圈速度成正比的感应电压,通过测量电路测得其电压的大小,便可得出速度的大小。 压电式加速度传感器

它也称为压电式加速度计,他是利用压电效应制成的一种加速度传感器。常见的结构形式有基于压电元件厚度变形的压缩式加速度传感器、基于压电元件剪切变形的剪切式和复合型加速度传感器。

机器人外部传感器

力或力矩传感器

机器人在工作时,需要有合理的握力,握力太小或太大都不合适。 力或力矩传感器的种类很多,有电阻应变片式、压电式、电容式、电感式以及各种外力传感器。力或力矩传感器通过弹性敏感元件将被测力或力矩转换成某种位移量或变形量,然后通过各自的敏感介质把位移量或变形量转换成能够输出的电量。机器人常用的力传感器分以下三类。 i.装在关节驱动器上的力传感器,称为关节传感器。它测量驱动器本身的输出力和力矩。用于控制中力的反馈。 ii.装在末端执行器和机器人最有一个关节之间的力传感器,称为腕力传感器。它直接测出作用在末端执行器上的力和力矩。

装在机器人手爪指(关节)上的力传感器,称为指力传感器,它用来测量夹持物体时的受力情况。 触觉传感器 人的触觉包括接触觉、压觉、力觉、冷热觉、滑动觉、痛觉等。 在机器人中,使用触觉传感器主要有三方面的作用: i.使操作动作使用,如感知手指同对象物之间的作用力,便可判定动作是否适当,还可以用这种力作为反馈信号,通过调整,使给定的作业程序实现灵活的动作控制。这一作用是视觉无法代替的。 ii.识别操作对象的属性,如规格、质量、硬度等,有时可以代替视觉进行一定程度的形状识别,在视觉无法使用的场合尤为重要。 iii.用以躲避危险、障碍物等以防事故,相当于人的痛觉。

接近觉传感器

接近觉是指机器人能感觉到距离几毫米到十几厘米远的对象物或障碍物,能检测出物体的距离、相对倾角或对象物表面的性质。这就是非接触式感觉。 滑觉传感器

机器人要抓住属性未知的物体时,必须确定自己最适当的握力目标值,因此需检测出握力不够时所产生的物体滑动。利用这一信号,在不损坏物体的情况下,牢牢抓住物体。为此目地设计的滑动检测器,叫做滑觉传感器。 视觉传感器

每个人都能体会到,眼睛对人来说多么重要。有研究表明,视觉获得的信息占人对外界感知信息的80%。人类视觉细胞数量的数量级大约为106,时听觉细胞的300多倍,时皮肤感觉细胞的100多倍。 人工视觉系统可以分为图像输入(获取)、图像处理、图像理解、图像存储和图像输出几个部分,实际系统可以根据需要选择其中的若干部件。 听觉传感器

智能机器人在为人类服务的时候,需要能听懂主人的吩咐,需要给机器人安装耳朵,首先分析人耳的构造。

声音是由不同频率的机械振动波组成,外界声音使外耳鼓产生振动,中耳将这种振动放大、压缩和限幅、并抑制噪声。经过处理的声音传送到中耳的听小骨,再通过卵圆窗传到内耳耳蜗,由柯蒂氏器、神经纤维进入大脑。内耳耳蜗充满液体,其中有30000各长度不同的纤维组成的基底膜,它是一个共鸣器。长度不同的纤维能听到不同频率的声音,因此内耳相当于一个声音分析器。智能机器人的耳朵首先要具有接受声音信号的器官,其次还需要语音识别系统。

在机器人中常用的声音传感器主要有动圈式传感器和光纤声传感器。 味觉传感器

味觉是指酸、咸、甜、苦、鲜等人类味觉器官的感觉。酸味是由氢离子引起的。比如盐酸、氨基酸、柠檬酸;咸味主要是由NaCl引起的;甜味主要由蔗糖、葡萄糖等引起的,苦味是由奎宁、咖啡因等引起的;鲜味是由海藻中的谷氨酸钠、鱼和肉中的肌酐酸二钠、蘑菇中的鸟苷酸二钠等引起的。 在人类的味觉系统中,舌头表面味蕾上的味觉细胞的生物膜可以感受味觉。味觉物质被转换为电信号,经神经纤维传至大脑。味觉传感器与传统的、只检测某种特殊的化学物质的化学传感器不同。目前某些传感器可以实现对味觉的敏感,如PH计可以用于酸度检测、导电计可用于碱度检测、比重计或屈光度计可用于甜度检测等。但这些传感器智能检测味觉溶液的某些物理、化学特性,并不能模拟实际的生物味觉敏感功能,测量的物理值要受到非味觉物质的影响。此外,这些物理特性还不能反应各味觉之间的关系,如抑制效应等。

实现味觉传感器的一种有效方法是使用类似于生物系统的材料做传感器的敏感膜,电子舌是用类脂膜作为味觉传感器,能够以类似人的味觉感受方式检测味觉物质。从不同的机理看,味觉传感器大致分为多通道类脂膜技术、基于表面等离子体共振技术、表面光伏电压技术等,味觉模式识别是由最初神经网络模式发展到混沌识别。混沌是一种遵循一定非线性规律的随机运动,它对初始条件敏感,混沌识别具有很高的灵敏度,因此应用越来越广。目前较典型的电子舌系统有新型味觉传感器芯片和SH—SAW味觉传感器。

总结:

传感器对于机器人有着至关重要的作用,通过对各种机器人传感器的学习和了解,我对机器人各种传感器有了一个新的认识,使我获益匪浅,为我以后这方面的学习打下了坚定的基础。

参考文献: (1)《机器人技术基础》,刘极峰

(2)《机器人传感器及其应用》,高国富,谢少荣 (3)《传感器及其应用》,谢文和

推荐第2篇:传感器设计论文

传感器 课 程 论 文

课程名称:论文题目:学 院:系 别:专 业:学 号:学生姓名:指导教师:日 期: 传感器技术 温度的传感器设计

合肥通用职业技术学院

机械工程系

机电一体化 机电1301 11130156 张印

邢老师 2015 年 1 月 4日

第 一 页

传感器的应用、发展前景及其目前的发展趋势

近年来,国内外温度传感器研发领域取得了很大的进步。温度传感器正从结构复杂、功能简单向集成化、智能化、多参数检测的方向迅速发展,为开发新一代温湿度测控系统创造了有利条件,也将温度测量技术提高到新的水平。国内数字温度仪测量温湿度采用的主要方法有:“温—阻”法,即采用电阻型的温度传感器,利用其阻值随温度的变化测量空气的温度。受传感器灵敏度的限制,这类温湿度仪的精度不是很高,一般条件下还可以满足需要,但是在环境实验设备等对精度要求较高的场合就难以满足要求了。

随着信息产业的发展及工业化的进步,温度不仅仅表现在以上几个方面直接或间接影响着人类基本生活条件, 还表现在对工生物制品、医药卫生、科学研究、国防建设等方面的影响。针对以上情况,研制可靠且实用的温度控制器显得非常重要。常用温度传感器的非线性输出及一致性较差,使温度的测量方法和手段相对较复杂,且给电路的调试带来很大的困难。传统的温度测量多采用模拟小信号传感器,不仅信号调理电路复杂,且温度值的标定过程也极其复杂,并需要使用昂贵的标定仪器设备。因此对于温湿度控制器的设计有着很大的现实生产意义。

随着光学技术在传感器领域的应用,出现了开关式温度测量器、辐射式温度测量器等温度测量器,使得温度测量精度和范围都有较大的提高,其中应用激光技术测温打破了传统的近距测温,可以针对远程温度测量[4-5]。

随着电子技术和自动化的发展,研究开发出数字式集成温度传感器。这种传感器是将温度和数字电路集成在一起,内部包含了温度传感器、A/D转换器、信号处理器、接口电路等,有的还有单片机的中央处理器、随即存取存储器和只读存储器集成在一起,成功的实现了温度传感器的数字化结构。数字式温度传感器的采集精度高、测试的可靠性高、又很强的抗干扰能力,这些都是模拟式温度传感器不能达到的,由于引入了数字式的温度反馈,有效地改善了比较器的失调和零点漂移对温度精度的影响。目前,数字温度传感器已经结合了总线技术、等接口和主机进行通信,这种数字化、集成化的传感器是将温度传感器的一个新的发展方向。

温度传感器的工作原理

热敏电阻温度测量传感器所采用的材料为铂金,该传感器应用了激光调阻和溅射成膜等技术制作形成的。选用铂电阻的原因是因为其电阻值可以随着温度的变化而近似线性的变化,且具有良好的温度重现性和良好的测试稳定性。

本文设计所使用的是铂膜温度传感器,该传感器零度时的阻值为1000Ω,该电阻的变化率为0.3851Ω/℃,在测量中薄膜铂电阻具有体积小,响应快,寿命长,测温范围宽,在氧化介质中性能稳定,线性度及精确度高等优点,很适合在便携式测量仪中使用。

由于热电阻随温度变化而引起电阻的变化值较小,如铂电阻 Pt1000 在零温度时的阻值

R0=1000,因此,在传感器与测量仪器之间的引线过长会引起较大的测量误差,在实际应用时,通常是热电阻与仪器或放大器采用两线或四线制的接线方式。两线制的引线电阻:铂电阻不超过 R0的 0.1%,铜电阻不超过 R0的 0.2%。采用四线制可消除连线过长而引起的误差。

第 二 页

电桥输出电压 V0为

V0=I /2×2R(Rt-Rr) /(2R+Rt+Rr)当 R>>Rt、Rr时,V0=I /(Rt-Rr) 其中

Rr为温漂很小的铂电阻 Rt为可变电阻 R 为固定电阻

I 为恒流源提供的电流 V0为输出电压。

传感器的动态特性

根据本文的设计,图1-1为所测得在0℃~ 100℃温度范围内铂电阻的阻值和温度的关系曲线。并且该图为传感器的动态特性。

图1-1铂电阻与温度关系曲线

由图1-1可以看出,随着温度升高铂电阻的的组织也随之升高,曲线呈近似线性变化。

传感器的静态特性

温度传感器探头采用的材料为铂金,应用激光调阻和溅射成膜等工艺技术制成。铂电阻的阻值能够随着温度的变化而近似线性变化,具有良好的温度重现性和测试稳定性。本文采用的是温度传感器探头如图1-2所示。

第 三 页

图1-2温度传感器探头图

常用的铂膜温度传感器

图1-3 温度传感器探头图

第 四 页

铂膜温度传感器技术指标

铂膜温度传感器的技术指标见下表 1.铂电阻的技术指标

2.热响应时间

在温度出现阶跃变化时,铂电阻的输出变化至量程变化50%所需要的时间成为热响应时间,用T0.5表示。

3.铂电阻绝缘电阻

常温绝缘电阻的试验电压可取直流 10~100V 任意值,环境温度在15~35℃范围内,相对湿度应不大于 80%,常温绝缘电阻值应大于 100M 。

4.铂电阻允许通过电流

通过铂电阻的测量电流最大不应超过 1mA。 5.公称压力

一般是指在长温下,保护管所能承受的不至于破裂的静态外压,承压数值的大小同保护管的材料,直径,壁厚,焊接强度等密切相关。

温度传感器是指检测外界温度的传感器,它将所测环境中的温度信号转换为便于处理,显示,记录的电(频率)信号等,在很多领域都有普遍的应用。

温度传感器从使用角度大致可分为接触式和非接触式两大类。前者是让温度传感器直接与待测物体接触,来检测被测物体温度的变化,而后者是使温度传感器与待测物体离开一定的距离。检测从待测物体放射出的红外线,从而达到测温的目的。在接触式和非接触式两大类温度传感器中,相比之下运用较多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用。它是利用转换元件电磁参数随温度变化的特性,对温度和与温度有关的参量进行检测的装置,其中将温度变化转换为电阻变化的称热电阻传感器,金属热电阻式传感器简称热电阻,半导体热电阻式传感器简称热敏电阻,将温度变化转换为电动势变化的称为热电偶传感器。

温度检测采用的最基本的是热电偶式和热敏电阻式。热电偶式应用广泛,价格便宜而且耐用,种类多,能够覆盖非常宽的温度范围,最高温度可达到2000℃。所以本文设计选择热敏电阻,该传感器主要随温度的变化阻值发生变化,主要测量范围为-200℃~ 500℃温度范围内测量。其温度系数大而且稳定,反应速度快,工艺价格低,测温环境稳定。

第 五 页

传感器的内部结构

在传感器中间沉积了过渡层氧化镍,同时为了提高铂薄膜的焊接连接特性,在镍薄膜上面又沉积了铜薄膜作为导线层,最后在最外层沉积了三氧化二铝薄膜作为保护膜,起到绝缘保护的作用,其膜系结构设计如图所示:

由于三氧化二铝的绝缘特性和高硬度、高稳定性等特点,可以避免传感器层和铜导线层的氧化,同时也可以保证传感器的耐腐蚀和耐冲击,从而保证传感器长期稳定地工作。

设计小结

利用铂薄膜的温度电阻特性以及磁控溅射镀膜技术设计并制备了薄膜热阻型温度传感器,得到的薄膜传感器在-200到600摄氏度之间有极高的线性度和稳定性,并且通过对不同工艺参数的分析得到了最佳的制备铂薄膜的工艺参数:工作压强0.6 Pa,靶基距60 mm,电源功率120 W。通过对退火温度的对比分析得到了铂薄膜最佳的退火温度为400℃,退火时间为2 h,这些都为制备更为稳定精度更高的铂薄膜温度传感器奠定了良好的基础。

第 六 页

推荐第3篇:传感器的应用论文

文献检索与科技论文写作

结 课 作 业

姓名:安 班级: 学号: 滨

2013级本科三班

201315110101

光纤温度传感器的设计

光纤温度传感器的设计

论文分析:

意义:光纤传感技术是一门新兴的应用物理技术,它在石油、通信、化工检测以及各种参量测量方面具有许多独特的优点,有广阔的应用前景。近年来,光纤技术已逐渐渗透到各研究领域,其应用范围日渐广泛。随着光纤传感系统在国防军事、航空航天、工矿企业、土木建筑、能源环保、生物医学、计算测量、自动控制等各领域的应用,对光纤传感系统的性能也不断提出新的要求。光纤温度传感器特别适用于易燃易爆的工作环境,从而弥补了传统的点温度传感器的不足。 主要内容及研究思路:本文从光纤的基础入手,首先介绍了光纤的基础知识,然后结合传感器引入了光纤温度传感器的定义

,分类及工作原理。本课题研究的是一种非功能性光纤温度传感器,它是利用高度敏感的双金属片作为感温元件,金属片的变化改变了光纤的通光强度。

目标:光纤温度传感器可以达到不但测温对象广,从监测相对低温的生物过程到监测高温的发动机零件,而且测量准确度、灵敏度高,抗电磁能力强,传输距离远,使用寿命长,价格相对低廉,使用更加经济。今后光纤温度传感器研究方向将会进一步提高传感器的精度、可靠性;提高抗干扰能力、稳定性,并简化器件结构,降低成本。

光纤温度传感器的设计

目 录

第1章 前 言

1.1选题背景及研究意义 1.2光纤传感器国内外研究现状 1.3光纤传感器及其组成与分类 1.4本论文的主要内容 第2章 光纤温度传感器理论 2.1光纤基础知识介绍 2.2热敏元件双金属片工作原理 2.3光纤探头的原理

2.4纤端光场的光强分布函数选取

2.5光纤温度传感器的特点及应用 第3章 光纤温度传感器系统组成与实验步骤 3.1 实验原理

3.2实验主要设备和材料 3.3实验搭建与调试 第4章 实验结果分析

4.1 位移光强曲线的测定及其与理论曲线的对比 4.2 温度光强曲线的测定及出现的问题和解决办法 4.3 测温曲线的选取及传感器测温范围的确定 第5章 结论与展望

5.1 实验结论

5.2光纤温度传感器存在的不足和展望 参考文献 致谢

光纤温度传感器的设计

第1章 前言

1.1 选题背景及研究意义

1.2光纤传感器国内外研究现状

1.2.1 国外研究现状

1.2.2 国内研究现状

1.3 光纤传感器及其组成与分类

1.4 本论文的主要内容

本文所采用的温度变换器为U型双金属片,依据双金属片的位置随温度的变化而变化的原理,利用双金属片的纵向位置改变来调制光纤探头接收到的光强,从而实现温度对光强的间接调制。与传统的指针式双金属片温度计相比,本传感器具有快速、灵敏、便于实现与计算机接口连接等优点。研究从基本的概念入手。

光纤温度传感器的设计

第2章 光纤温度传感器理论

2.1光纤基础知识介绍

2.1.1 光纤的结构和分类

2.1.2 光纤的传输原理

2.2热敏元件双金属片工作原理

2.2.1 双金属片弯曲机理及其选取

2.2.2 双金属片得到选取及其补偿和调制机理

光纤温度传感器的设计

2.2.3双金属片温度变换对位移的补偿机理及其位移的计算

2.3光纤探头的原理

2.3.1 光纤反射式调制原理及与光强分布的关系

2.3.2 光纤传输信号准共路理论

2.4纤端光场的光强分布函数选取

2.5光纤温度传感器的特点及应用

光纤温度传感器的设计

第3章 光纤温度传感器系统组成与实验步骤

3.1 实验原理

3.2实验主要设备和材料

3.3实验搭建与调试

3.3.1 LED光源I-P特性曲线测试

3.3.2 反射式光纤位移传感实验

3.3.3 光纤温度传感器实验

光纤温度传感器的设计

第4章 实验结果分析

4.1 位移光强曲线的测定及其与理论曲线的对比

4.2 温度光强曲线的测定及出现的问题和解决办法

4.3 测温曲线的选取及传感器测温范围的确定

光纤温度传感器的设计

第5章 结论与展望

5.1 实验结论

5.2光纤温度传感器存在的不足和展望

光纤温度传感器的设计

参考文献

[1]王剑锋,刘红林,张淑琴,余向东,孙忠周,金尚忠,张在宣.基于拉曼光谱散射的新型分布式光纤温度传感器及应用[J].光谱学与光谱析,2013,04:865-871.[2]廖国珍,张军,蔡祥,谭绍早,唐洁媛,肖毅,陈哲,余健辉,庞其昌.基于石墨烯的全光纤温度传感器的研究[J].光学学报,2013,07:26-32.[3]宋海峰,龚华平,倪凯,董新永.基于波长与强度双解调的光纤温度传感器[J].光电子.激光,2013,09:1694-1697.[4]李涛,戴玉堂,赵前程.一种新型微结构高灵敏度光纤温度传感器[J].光电子.激光,2014,04:625-630.[5]李强,王艳松,刘学民.光纤温度传感器在电力系统中的应用现状综述[J].电力系统保护与控制,2010,01:135-140.[6]伍铁生,王丽,王哲,刘玉敏,胡署阳,尹丽丹.一种Sagnac干涉仪结构的光子晶体光纤温度传感器[J].中国激光,2012,11:217-221.[7]程继兴,刘霞.一种基于AT89C51的光纤温度传感器的软硬件实现[J].电子测量技术,2012,12:102-107.[8]周广丽,鄂书林,邓文渊.光纤温度传感器的研究和应用[J].光通信技术,2007,06:54-57.[9]张颖,张娟,郭玉静,王庆华.分布式光纤温度传感器的研究现状及趋势[J].仪表技术与传感器,2007,08:1-3+9.[10]方曼.分布式拉曼光纤温度传感器系统及温度分辨率提高的研究[D].电子科技大学,2004.[11]吕宗岩.分布式光纤温度传感器的系统设计[D].燕山大学,2006.[12]匡绍龙,朱学斌.分布式光纤温度传感器原理及其在变电站温度监测中的应用[J].电力自动化设备,2004,09:79-81.[13]徐申翔,刘南生,张华.光纤温度传感器原理及应用[J].南昌大学学报(工科版),2004,04:9-14.[14]刘凡凡.SMS结构光纤温度传感器[D].浙江大学,2013.[15]陈艳,王海燕,张朋,王宁.简述光纤温度传感器的原理及应用[J].传感器世界,2008,12:23-27.[16]邵嫄琴.分布式光纤温度传感器校准中参考温度的研究[D].中国计量学院,2013.[17]沈永行.从室温到1800℃全程测温的蓝宝石单晶光纤温度传感器[J].光学学报,2000,01:83-87.[18]虞倩.高精度医用光纤温度传感器的研制及其特性研究[D].中国计量学院,2012.[19]孟庆民.光纤温度传感器用于电力高压开关在线监测的研究[D].东南大学,2005.[20]王喜光.分布式光纤温度传感器信号处理的研究[D].燕山大学,2006.

光纤温度传感器的设计

致 谢

推荐第4篇:热电式传感器论文

热电式传感器论文

12自动化

李伟强

1241202038

摘要:热电式传感器是一种将温度变化转化为电量变化的装置。在各种热电式传感器中,以将温度量转为电势和电阻的方法最为普遍。其中最常用于测量温度的是热电偶和热电阻。这两种热电式传感器目前在工业生产中已得到广泛应用,并且有与其相配套的显示仪表与记录仪表。 关键字:热电式热电偶、工作原理、应用

热电式传感器定义

热电式传感器是将温度变化转换为电量变化的装置。它是利用某些材料或元件的性能随温度变化的特性来进行测量的。例如将温度变化转换为电阻、热电动势、热膨胀、导磁率等的变化,再通过适当的测量电路达到检测温度的目的。把温度变化转换为电势的热电式传感器称为热电偶;把温度变化转换为电阻值的热电式传感器称为热电阻。 工作原理

热电偶是利用热电效应制成的温度传感器。所谓热电效应,就是两种不同材料的导体(或半导体)组成一个闭合回路,当两接点温度T和T0不同时,则在该回路中就会产生电动势的现象。由热点效应产生的电动势包括接触电动势和温差电动势。接触电动势是由于两种不同导体的自由电子密度不同而在接触处形成的电动势。其数值取决于两种不同导体的材料特性和接触点的温度。温差电动势是同一导体的两端因其温度不同而产生的一种电动势。其产生的机理为:高温端的电子能量要比低温端的电子能量大,从高到低温端的电子数比从低温端跑到高温端的要多,结果高温端因失去电子而带正电,低温端因获得多余的电子而带负电,在导体两端便形成温差电动势。热电阻传感器是利用导体的电阻值随温度变化而变化的原理进行测温的。热电阻广泛用来测量-200~850℃范围内的温度,少数情况下,低温可测量至1K,高温达1000℃标准铂电阻温度计的精确度高,作为复现国际温标的标准仪器。

热电传感器的应用 1.无触点恒温控制器

无触点自动温控电路如下图所示。其控温范围从室温到150℃,精度为±0.1℃。测温用的热敏电阻RT作为偏置电阻接在T

1、T2组成的差分放大器电路内,当温度变化时,热敏电阻阻值变化,引起T1集电极电流变化,影响二极管D支路电流,从而使电容C充电电流发生变化,则电容电压达到单结晶体管BT峰点电压的时刻发生变化,即单结晶体管的输出脉冲产生相移,改变了可控硅SCR的导通角,改变了加热丝的电源电压,从而达到自动控温的目的。图中电位器Rp用以调节不同的设定温度。

2.室内空气加热

室内空气加热器PTC热敏元件由于具有升温快、能自控、安全节能、组成电路简单等特点,因而在各种取暖器上到了广泛的应用。下图是空气加热器的电路结构示意图,其中PTC元件上有许多小孔,后面装有散热用的鼓风机。当接通电源后,PTC元件由于阻值小会有大电流通过而开始加热,鼓风机同时工作,它吹出的空气把PTC元件产生的热量带向室内空间。由于空气流速和PTC热量的自动平衡,出风口的温度达50~60℃。当鼓风机由于故障原因停止转动时,PTC元件的阻值会急剧增大,从而限制了电流的通过,温度便下降到很低,可以避免意外事故的发生。

PTC元件的形状常用的有方形板状和圆盘状两种。方形板状的尺寸为70mm×70mm×10mm,在厚度方向上约1800个小孔。圆盘状的尺寸为¢50×(3.5~7.0)mm。PTC元件的功率为300~1000W

3.自动门控制电路

下图是自动门控制电路原理图。人体移动探测采用新型热释电红外线探测模块HN911。场效应管T1用作延时控制,通过调节电位器RP1便可改变延时控制的时间。光耦合器件MOC3020起交直隔离作用。当无人通过自动门时,HN911输出端为低电平,T1无控制信号输出,双向晶闸管T2关闭,负载机不工作,门处于关闭状态。当有人行走接近自动门时,HN911模块检知到人体红外能量,输出端1为高电平输出,双向晶闸管导通,负载电机工作,打开自动门。当自动门运行到位时,由限位开关S切断电源。由于HN911模块的输出端2输出的电平正和1端输出的电平相反,故可用2端端的输出信号控制自动门关闭。

4.客房火灾报警器

下图是客房火灾报警器原理电路图。在每个客房中安装有由TT201温控晶闸管组成的火灾传感器,在每一路中又都串有发光二极管LED,其总线串接报警电路再与电。为及时了解灾情,发光二极管及报警电路均设置在总监控台。若某一房间发生火灾时,房内的环境温度升高,当环境温度升高到温控晶闸管的开启电压温度时,该路的温控晶闸管导通,相应发光二极管发光显示,同时,由于温控晶闸管导通会使总线电流增大,产生报警信号,再经报警电路检

测处理后,立即发出火灾警笛声响。

5.液位报警器

用集成温度传感器的液位报警器的原理电路。它由两个AD590集成温度传感器、运算放大器及报警电路等组成,其中传感器B2设置在警式液面的位置,传感器B1设置在外部。正常情况下,两个传感器在相同的温度条件下,调节电位器RP1,使运算放大器输出为零。当液面升高时,传感器B2将会被液体淹没,由于液体温度与环境温度的差别,使运算放大 器工作输出不为零的控制信号,驱动报警电路报警。

小结:

热电式传感器是一种将温度变化转换为电量变化的装置。在各种热电式传感器中,以将温度量转换为电势值和电阻值的方法最为普遍。如:热电偶就是将温度转换为电势值的传感器;金属热电阻和半导体热敏电阻将温度转换为电阻值。它们在工业生产中都得到了广泛的应用。利用半导体PN结的伏安特性与温度之间的关系,可以制成温敏二极管、温敏三极管、温敏晶闸管以及集成温度传感器,它们在窄温场中也得到了十分广泛的应用。除此之外,本章还讨论了热释电红外传感器及其应用。学完本章之后,初步掌握热电偶、金属热电阻、半导体热敏电阻、集成温度传感器,热释电红外传感器的工作原理及应用。

推荐第5篇:基于18B20温度传感器论文

基于单片机18B20的温度计设计

摘要:文章主要介绍有关18B20温度传感器的应用及有关注意事项,经典接线原理图。 1.引言:

温度传感器的种类众多,在应用与高精度、高可靠性的场合时DALLAS(达拉斯)公司生产的DS18B20温度传感器当仁不让。超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B20更受欢迎。对于我们普通的电子爱好者来说,DS18B20的优势更是我们学习单片机技术和开发温度相关的小产品的不二选择。了解其工作原理和应用可以拓宽您对单片机开发的思路。

2.DS18B20的主要特征:  * 全数字温度转换及输出。  * 先进的单总线数据通信。  * 最高12位分辨率,精度可达土0.5摄氏度。  * 12位分辨率时的最大工作周期为750毫秒。  * 可选择寄生工作方式。  * 检测温度范围为–55°C ~+125°C (–67°F ~+257°F)  * 内置EEPROM,限温报警功能。  * 64位光刻ROM,内置产品序列号,方便多机挂接。  * 多样封装形式,适应不同硬件系统。 3.DS18B20引脚功能:

•GND 电压地 •DQ 单数据总线 •VDD 电源电压

4.DS18B20工作原理及应用:

DS18B20的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。其一个工作周期可分为两个部分,即温度检测和数据处理。在讲解其工作流程之前我们有必要了解18B20的内部存储器资源。18B20共有三种形态的存储器资源,它们分别是:

ROM 只读存储器,用于存放DS18B20ID编码,其前8位是单线系列编码(DS18B20的编码是19H),后面48位是芯片唯一的序列号,最后8位是以上56的位的CRC码(冗余校验)。数据在出产时设置不由用户更改。DS18B20共64位ROM。

5.控制器对18B20操作流程:

1、复位:首先我们必须对DS18B20芯片进行复位,复位就是由控制器(单片机)给DS18B20单总线至少480uS的低电平信号。当18B20接到此复位信号后则会在15~60uS后回发一个芯片的存在脉冲。

2、存在脉冲:在复位电平结束之后,控制器应该将数据单总线拉高,以便于在15~60uS后接收存在脉冲,存在脉冲为一个60~240uS的低电平信号。至此,通信双方已经达成了基本的协议,接下来将会是控制器与18B20间的数据通信。如果复位低电平的时间不足或是单总线的电路断路都不会接到存在脉冲,在设计时要注意意外情况的处理。

3、控制器发送ROM指令:双方打完了招呼之后最要将进行交流了,ROM指令共有5条,每一个工作周期只能发一条,ROM指令分别是读ROM数据、指

定匹配芯片、跳跃ROM、芯片搜索、报警芯片搜索。ROM指令为8位长度,功能是对片内的64位光刻ROM进行操作。其主要目的是为了分辨一条总线上挂接的多个器件并作处理。诚然,单总线上可以同时挂接多个器件,并通过每个器件上所独有的ID号来区别,一般只挂接单个18B20芯片时可以跳过ROM指令(注意:此处指的跳过ROM指令并非不发送ROM指令,而是用特有的一条“跳过指令”)。ROM指令在下文有详细的介绍。

4、控制器发送存储器操作指令:在ROM指令发送给18B20之后,紧接着(不间断)就是发送存储器操作指令了。操作指令同样为8位,共6条,存储器操作指令分别是写RAM数据、读RAM数据、将RAM数据复制到EEPROM、温度转换、将EEPROM中的报警值复制到RAM、工作方式切换。存储器操作指令的功能是命令18B20作什么样的工作,是芯片控制的关键。

5、执行或数据读写:一个存储器操作指令结束后则将进行指令执行或数据的读写,这个操作要视存储器操作指令而定。如执行温度转换指令则控制器(单片机)必须等待18B20执行其指令,一般转换时间为500uS。如执行数据读写指令则需要严格遵循18B20的读写时序来操作。数据的读写方法将有下文有详细介绍。 6.DS28B20芯片ROM指令表

Read ROM(读ROM)[33H] (方括号中的为16进制的命令字) Match ROM(指定匹配芯片)[55H] Skip ROM(跳跃ROM指令)[CCH] Search ROM(搜索芯片)[F0H] Alarm Search(报警芯片搜索)[ECH] 7.DS28B20芯片存储器操作指令表:

Write Scratchpad (向RAM中写数据)[4EH] Read Scratchpad (从RAM中读数据)[BEH] Copy Scratchpad (将RAM数据复制到EEPROM中)[48H] Convert T(温度转换)[44H] Recall EEPROM(将EEPROM中的报警值复制到RAM)[B8H] Read Power Supply(工作方式切换)[B4H] 8.写程序注意事项

DS18B20复位及应答关系

每一次通信之前必须进行复位,复位的时间、等待时间、回应时间应严格按时序编程。

DS18B20读写时间隙:

DS18B20的数据读写是通过时间隙处理位和命令字来确认信息交换的。 写时间隙:

写时间隙分为写“0”和写“1”,时序如图7。在写数据时间隙的前15uS总线需要是被控制器拉置低电平,而后则将是芯片对总线数据的采样时间,采样时间在15~60uS,采样时间内如果控制器将总线拉高则表示写“1”,如果控制器将总线拉低则表示写“0”。每一位的发送都应该有一个至少15uS的低电平起始位,随后的数据“0”或“1”应该在45uS内完成。整个位的发送时间应该保持在60~120uS,否则不能保证通信的正常。 读时间隙:

读时间隙时控制时的采样时间应该更加的精确才行,读时间隙时也是必须先由主机产生至少1uS的低电平,表示读时间的起始。随后在总线被释放后的15uS

中DS18B20会发送内部数据位,这时控制如果发现总线为高电平表示读出“1”,如果总线为低电平则表示读出数据“0”。每一位的读取之前都由控制器加一个起始信号。注意:必须在读间隙开始的15uS内读取数据位才可以保证通信的正确。 在通信时是以8位“0”或“1”为一个字节,字节的读或写是从高位开始的,即A7到A0.字节的读写顺序也是如图2自上而下的。

9.接线原理图:

本原理图采用四位数码管显示,低于100度时,首位不显示示例27.5,低于10度时示例为9.0,低于零度时示例为-3.7。

结束语:基于DS18B20温度测量温度准确,接线简单,易于控制,加以扩展可以应用到各种温度控制和监控场合。

参考文献:

DALLAS(达拉斯)公司生产的DS18B20温度传感器文献

程序:

#include

#define uchar unsigned char #define uint unsigned int

sbit sda=P1^7; sbit dian=P0^7;//小数点显示 uint tem;

uchar h; uchar code tabw[4]={0xf7,0xfb,0xfd,0xfe};//位选 uchar code tabs[12]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xff,0xbf};//数码管数据

//

0

4 5 6

8 9

- uchar code ditab[16]= {0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04,0x05,0x06,0x06,0x07,0x08,0x08,0x09,0x09}; //查表显示小数位 ,1/16=0.0625,即当读出数据为3时,3*0.0625=0.1875,读出数据为3时对应1,查表显示1,为4时显2 uchar data temp[2]={0};//高位数据与低位数据暂存 uchar data display[5]={0};//显示缓存

void delay(uchar t)//t为1时延时小于5us { while(t--); } void delay1()//4us {} void delays(uchar m)//1ms { uchar i,j; for(i=0;i

for(j=0;j

while(x)

{

sda=1;

sda=0;

delay(50);//延时500us以上

sda=1;

delay(5);//等待15us-60us

x=sda;

}

delay(45);

x=~sda; }

sda=1; } void write_s(uchar temp)//写入一个字节 { uchar i; for(i=0;i

sda=1;

sda=0;

delay1();

sda=temp&0x01;

delay(6);

temp=temp/2; } sda=1; delay(1); } uchar read_s()//读出一个字节的数据 { uchar m=0,i; for(i=0;i

sda=1;

m>>=1;

sda=0;

delay1();

sda=1;

delay1();

if(sda)

m=m|0x80;

delay(6); } sda=1; return m; } uint read_1820()//读出温度 { reset(); delay(200); write_s(0xcc);//发送命令

write_s(0x44);//发送转换命令

reset(); delay(1); write_s(0xcc);

write_s(0xbe); temp[0]=read_s(); temp[1]=read_s(); tem=temp[1]; tem

P0=tabs[display[i]];

P1=tabw[i];

delays(7);

if(i==1)

dian=0;

P1=tabw[i];

delays(2); } } void convert_t(uint tem)//温度转换{ uchar n=0; if(tem>6348) {

tem=65536-tem;

n=1; } display[4]=tem&0x0f; display[0]=ditab[display[4]];

display[4]=tem>>4;

display[3]=display[4]/100;

display[1]=display[4]%100;

display[2]=display[1]/10;

display[1]=display[1]%10; if(!display[3]) {

display[3]=0x0a; } if(!display[2])

display[2]=0x0a; if(n)

// 取百位数据暂存

// 取后两位数据暂存// 取十位数据暂存

{

n=0;

display[3]=0x0b; } } void main() { delay(0); delay(0); delay(0); P0=0xff; P1=0xff; for(h=0;h

{

display[h]=0; } reset(); write_s(0xcc); write_s(0x44); for(h=0;h

scan_led(); while(1) {

convert_t(read_1820());//读出并处理

scan_led();//显示温度

} }

推荐第6篇:单片机温度传感器论文_图文.

毕业设计(论文)答辩记录表 学生姓名 所学专业 指导老师 答辩教师提问 性 别 论文题目 答辩小 组成员 学生回答问题情况 班 级 答 辩 记 录 指 导 教 师 评 语 指导老师(签名) : 年 月 日 21 初评成绩 (由指导老师填写) 答辩主持人(签名) : 年 月 日 毕业设计(论文)评价表 毕业 设计 (论 文) 评语 答辩 评语 评 定 等 级 答辩成员签名 年 月 日 22 答辩委员会 主任意见 签字 年 月 日 23

推荐第7篇:敏感材料与传感器论文

红外感应材料

作者:adverlouis 红外线是一类电磁波的统称,广泛用于指代波长从1mm到770nm之间的电磁波。在自然界中,任何物体都能够发射红外线,任何物体都会吸收红外线。红外线在自然界中主要起传播能量的作用,其在物体上的效应主要是热效应。良好的红外线发射物体同时也是良好的红外线吸收物体。

由于红外线在自然界中的广泛存在,决定了它在自然界和人类社会中的广泛应用。而对红外线的任何利用离不开对红外线的检测,或者说感应。在自然界中,很多动物都能够利用红外线来获取信息,正如人类利用可见光来接收信息一样。蛇类利用舌头上的热感器官来捕捉红外线,蚊子利用头部的红外线感应器来确定猎物位置。这些是自然界历经千百年变化而衍生出来的生物红外感应器,其精巧型是超出人类解析范围的。而进入二十世纪以来,自红外线被发现以来,人类也在寻找各种技术来检测红外线,设计了多种多样的红外线传感器。

红外传感器的先进与否由制造传感器采用的红外感应材料决定。历经接近两百年的发展,红外感应技术也发生了翻天覆地的变化。最初的时候,人们曾利用红外线的热效来检测红外线 ,由于当没有半导体材料,人们只好采用热电偶来检测红外线,由于热电偶较低的灵敏性和红外线微弱的热效应,当时的检测效果可想而知。也有人采用感光胶片来对红外线进行检测,但是红外线的波长较长,光子能量较低,胶片的感光效果并不理想。直到半导体材料出现,红外检测技术才真正的开始发展起来。

从工作机理上来分,红外感应材料可分为热探测仪和光子型探测仪。

热探测仪利用了红外线的热效应,当红外线照射到热探测仪的敏感材料时,敏感材料的温度就会发生变化,而温度的变化可以转化成一定的电信号输出出来,从而实现了红外信号到电信号的转化。因为是利用红外线的热效应,热探测的响应时间较长。但是对波长的要求,即对单光子能量的要求较低,因此热探测的响应范围较广 ,对于波长超过200um的红外线,热探测仪是唯一的选择。

光子型探测仪利用了光子的能量效应。当红外线照射到光子敏感材料上时,材料中的电子就会接收红外光子的能量,改变其能量状态,由此改变了材料的电学性质。通过对材料电学性质的检验,就可以得到入射红外线的相关信息,事实上也是一种由红外信号到电信号的转化。光子型探测仪的感应材料从种类上来划分可以划分为三种,分别是半导体探测材料,超导探测材料和超巨磁电阻探测材料。其中半导体探测材料是发展历史最长的红外感应材料,也是发展最为完善的红外感应材料。超导探测材料技术发展时间较短,技术工艺尚不成熟,但是,随着近年来的高温超导材料的不断发展,超导材料显示出了巨大的前景。超巨磁电阻探测技术更是刚起步的领域,目前仍处于探索研究阶段。

半导体红外探测材料包括硫化铅,锑化yin,锗掺杂(金,汞),碲锡铅,碲镉汞,硫酸三甘酞,钮酸铿,锗酸铅,氧化镁等。其中锑化yin和碲镉汞是目前红外光电体系使用的主要探测材料,特别是碲镉汞是世界研究的重点。当前生长碲镉汞体材料的主要方法是固态再结晶,少数采用垂直区熔和磅熔剂等方法生长。碲镉汞体材料的主要问题是组分不易控制,得不到大尺寸均匀晶体,成品率低等。在这种情况下国外一些公司仍然在寻求新的生长方以改善晶体质量。如近年来采用的移动热区法和移动溶剂法已取得进展,尽管从科学研究的角度来看碲镉汞体材料已逐渐让位,但从六十年代初开始研究到七十年代初,取得突破性进展的碲镉汞体材料近十几年在红外技术的发中发挥了和仍然在发挥着主要的作用。当前绝大部分红外军事装备所用的红外探测器都是由碲镉汞体材料制造的。在碲镉汞红外探测材料的研究上,美国和法国走的是不同的研究道路。法国着重于研究制备型红外感应材料,世界上第一个光伏型红外探测仪就是在法国诞生的。美国着重于材料的提纯,认为有了高纯度的材料,就便于制造出高性能的红外检测仪。法国科研界认为:制造光伏器件并不需要高纯度的半导体材料,杂质浓度在1018CM-8即可。尽管碲镉汞是目前制备红外探测仪的最好材料,但是它所存在的不足,仍是人们寻找新型红外感应材料的依据。在七十年代,碲锡铅曾经是碲镉汞的强力竞争者,但是在后来的发展中败下阵来。但近年的发展中它又有所进展,它与硅的失配也可以用过渡办法加以解决。由于汞碲与镉碲结合自由能较小,晶体的缺陷较多,错位高。而汞碲和锌碲的结合自由能大于前者,因此错位可以很低。碲锌汞可能成为制造红外探测器的更好的材料。汞锰碲也是一种很有希望的新材料,当x=0.6时禁带宽度为0,且其晶体生长较碲镉汞还要容易些,但是,目前由于材料纯度不够,还不能做出高性能的红外感应材料。此外人们曾经认为镉碲晶体是外延的碲镉汞一种较好的衬底材料,但它并不是一种理想的衬底材料,因为它的晶体结构并不与碲镉汞完全匹配;其次是错位密度很降下来。因此,人们积极寻找更适合的材料。据认为碲锌镉较镉碲要好的多,国外正研究用它取代镉碲作为碲镉汞或锌镉汞的衬底材料。

超导红外探测仪在工作机理上又可分为三类:超导—绝缘—超导红外探测仪,热电子红外探测仪,超导薄膜红外探测仪。超导红外探测仪探测率较高,且其噪声远低于其他的红外探测仪,响应波长范围更大。由于超导和非导电电子之间存在能隙。当有光子能量大于能隙入射后,电子会吸收该能量发生跃迁从而产生光电流。该光电流在超导体中的效应十分磁明显。通过对电流磁效应的测量,可以间接得到红外入射光的有关信息。利用以上原理制备的红外感应器就是超导—绝缘—超导红外探测仪。热电子红外探测仪分为高温超导和低温超导两类。低温超导红外探测仪主要的部件是几个纳米厚的铌超导纳米微桥和作为冷却装置的两个金块组成的混频器。当铌薄膜吸收光子时,其薄膜内电子温度会很快升高。而薄膜电阻依赖于电子温度,电子温度改变会改变薄膜的电阻。从而将入射红外线信号转化为电信号。高温超导发现以后, LeiaR.Val 和R.H.Ono研制了YBCO超导薄膜的热电子微红外探测仪, 它主要是用生长于Si 衬底上外延超导薄膜( 厚几十纳米、宽几个微米) , 含钇氧化锆( YSZ) 为缓冲层, 工作温度为80K, 大大提高了以往热电子红外探测仪的工作温度。超导薄膜红外探测仪主要利用了超导薄膜在Tc附近的I-V非线性关系 。以超导薄膜作为吸收层,用超导量子干涉仪读出数据。目前的超导薄膜探测仪及发展了低温下的超导薄膜红外探测仪又发展了高温下的超导薄膜红外探测仪。

钙钛矿锰化合物具有一系列的特殊性质近年来引起了人们的注意。在磁场中,它们的电阻发生巨大变化,从而被人们称为超巨磁电阻材料。进一步的研究还发现,大多数超巨磁电阻材料在略低于转变点温度时其电阻会突然下降。通过掺杂,氧退火等方式可以改变材料的转折点。红外线的入射会改变材料的温度,而温度的改变会引起超巨磁电阻材料电阻的急剧变化。利用这一点,可以将超巨磁电阻材料做成非常灵敏的红外线检测仪。但是,目前为止,超巨磁电阻材料的转折点温度依然没能达到正常的温度使用要求。而关于其响应范围的限制也在进一步的研究中。随着人们认识的加深,超巨磁电阻材料将成为一种非常有前景的材料出现在现代科学和工业应用中。

红外检测在现代生活中遍布与民用和军事之中。我们随处可见的感应盥洗装置,军事上的红外成像仪,红外追踪仪等等。红外感应材料弥补了人类在可见光以外的信息获取渠道。是人类利用自身的知识与技术提高人类生物体能力的一个很好地证明。

参考文献

[1] 王曼霞,郑稼祥.国外红外材料的现状和展望[J].宇航材料工艺.1996.3.1-14 [2] 张春霞,张鹏翔.红外探测材料的发展状况及未来发展[J].云南冶金.2004.33.35-41 [3] 林钧挺.红外材料与器件技术的发展.

[4] 张志坚.红外光学材料的现状与发展[J].云南冶金.2000.5.35-41

推荐第8篇:传感器的优化设计论文

1结构解耦优化设计

根据上面的原理可知,基于Stewart结构的六维力传感每一个支路如果只受到拉压方向的力,则测量的结果将比较准确,如果有耦合力进入该支路传感器,则由于耦合的影响,传感器的精度会降低,并且耦合因素是降低传感器精度的一个重要原因,因此,就需要设计合理的结构将耦合应力影响降到最小,从而提高测量精度。本文在结构解耦设计上,主要在2个方面进行改进:一是尽量减少耦合力的引入;另一方面是尽量提高结构的抗耦合能力。

1.1支路去耦结构优化设计

传感器维间耦合的产生是在主测量载荷作用时会伴随着非测量方向载荷的干扰影响。根据Stewart六维力传感器的特点与工作原理,传感器耦合形式主要是各支路传感器会受到额外的弯曲和沿轴线的扭转作用。对此,本文设计了一种支路传感器去耦结构可以很好地减小耦合扭曲、弯曲的影响。它由球头球窝组件、十字槽链接杆部件等部分构成,如图2所示。设计思路如下:1)将传统的球铰面接触改为锥头球窝的点接触,连接杆一端为锥状半球型,套入在半球形的窝中,基本实现点接触,这样,在对传感器施加力时,力比较集中,大大减小了杂散力的影响,提高了载荷传递的稳定性,并且通过接触面的减小降低了耦合影响。2)在连接杆上加工可等效为弹性铰链的正交十字槽结构,当有弯曲力矩施加到支路传感器上时,由于有弹性铰链效应,弯曲力矩的影响将会大大减小,使得力传递基本上按照设计的方向进行,力的传递越集中,传感器的精度就越高。

1.2支路传感器优化设计

为了提高传感器整体抗耦合性,各支路传感器结构须具有很好抗扭、抗弯曲能力。本文根据力学分析,将板环结构改为圆环内嵌十字梁结构,圆环内嵌十字梁结构集合了板环结构线性好、输出灵敏度高、刚性好的优点,同时具备工作区应变稳定、对称、抗弯曲、抗扭转等特性。其力学模型如图3所示。圆环内嵌十字梁结构测量的是梁上的拉/压应力,当环受拉向或压向载荷作用时,垂直与水平直径位移方向相反,在十字梁的根部(图3(b)中1,2,3,4处)会产生弯曲和拉伸两类变形,其中拉伸应变可通过全桥接线测量,环上的弯曲应力具有很好的对称性,因此,传递到梁上的工作应变为纯拉/压应变,工作应变区如图3(b)的1,2,3,4处。本文利用Solidworks软件为对优化前后样机进行仿真受力分析,比较工作区应变,验证优化结构的合理性。仿真时对优化前后的传感器都进行装配体受力分析,严格按照实际参数(材料、约束、配合、载荷)进行仿真。载荷施加方法:在轴向载荷基础上附加额外的弯矩与扭矩,测试其对工作应变区影响。两结构施加载荷大小、方向、作用点都一致,其中对于扭矩加力,是直接施加于上端铰座面上;对于弯矩加力,是在同一面上施加侧向力荷来等效,如图4。根据仿真的结果,得到的数据由表1所示。由仿真数据可得:1)优化后支路传感器的抗耦合力矩能力明显强于未优化传感器的抗耦能力。比如:在附加100力矩时,优化后的传感器其微应变值增加了(1105-951)×10-6=154×10-6,而未优化的传感器微应变值增加了(1510-956)×10-6=554×10-6,因此,优化后的结构其抗扭能力大大加强。2)优化后支路传感器的抗侧向力的能力明显强于未优化传感器的抗侧向能力。比如:在附加测向力为200N时,优化后的传感器其微应变值增加了(1215-951)×10-6=264×10-6,而未优化的传感器微应变值增加了(1460-956)×10-6=504×10-6,因此,新结构抗侧向力效果明显。2.3支路传感器的优化结构根据以上的分析结果,新的支路传感器利用了各种去耦方式,得到的总体结构如图5所示。

2六维力传感器的标定

依据要研制的传感器量程和精度,设计了相应的标定系统,该系统的实现主要是通过比对的方法来进行,在施加力的路径上串联一个高精度的S型传感器,精度为0.03%,满足本系统要求。将优化前后传感器在完全相同的试验条件下进行加载并记录测量结果,利用线性解算法求解各自的映射关系矩阵,最后验证比对测量精度。试验标定过程中对传感器6支路通道依次进行标定,每路各取不少于6个标定点,并进行递增、递减加载各3次,然后对递增、递减的标定数据进行均值化处理即为最终的标定数据。对于六维力传感器,解耦的优劣和传感器的精度息息相关,一个方向的加载很难对传感器的解耦能力做出全面的评价,截至目前为止,大部分的论文只是在试验时只是加载了一维力,只有个别的文章提及到二维加载[11],还没有三维加载的试验数据。本文为了验证传感器的耦合情况,进行了三维复合加载,标定数据见表2~表4。

3结束语

本文设计了一种基于AT89S52单片机和DS18B20数字温度传感器的温度采集报警系统,对软硬件设计进行详细说明。该设计具有结构简单、精度高和稳定性好等优点,适用于粮仓、电力机房、轴瓦、空调、冰箱和工农业等领域,DS18B20单总线和多点式测温特点使其扩展性加强,具有广阔的市场前景。

推荐第9篇:传感器与检测技术论文

光电传感器--太阳能电池板

太阳能电池板是利用光生伏特效应原理制造的。在光线作用下能够使物体产生一定方向的电动势的现象叫做光生伏特效应。基于该效应的光电器件有光电池和光敏二极管、三极管。太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作的薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。

太阳能电池板 Solar panel

分类:晶体硅电池板:多晶硅太阳能电池、单晶硅太阳能电池。

非晶硅电池板:薄膜太阳能电池、有机太阳能电池。

化学染料电池板:染料敏化太阳能电池。 太阳能发电系统

太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或 110V,还需要配置逆变器。各部分的作用为:

(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳能转化为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。

(二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项。

(三)蓄电池:一般为铅酸电池,一般有12V和24V这两种,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。

(四)逆变器:在很多场合,都需要提供AC220V、AC110V的交流电源。由于太阳能的直接输出一般都是DC12V、DC24V、DC48V。为能向AC220V的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。

晶体硅太阳能电池的制作过程:

晶体硅太阳能电池

“硅”是我们这个星球上储藏最丰量的材料之一。自从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维。20世纪末,我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。生产过程大致可分为五个步骤:a、提纯过程 b、拉棒过程 c、切片过程 d、制电池过程 e、封装过程。

太阳能电池的应用:

1 太阳能电池,1971年首次应用于我国发射的卫星上。1973年开始将太阳能电池用于地面。由于受到价格和产量的限制,市场发展很缓慢,除了作为卫星电源,在地面上太阳能电池仅用于小功率电源系统,如航标灯、铁路信号系统等。

2002年,国家有关部委启动了“西部省区无电乡通电计划”,通过光伏和小型风力发电解决西部七省区无电乡的用电问题。这一项目的启动大大刺激了太阳能发电产业,国内建起了几条太阳能电池的封装线,使太阳能电池的年生产量迅速增加。

目前太阳能电池已经开始广泛用于通信、交通、民用产品等各个领域,光伏发电不但列入到国家的攻关计划,而且列入国家电力建设计划,同时也在一些重大工程项目中得到应用。2003年底,我国太阳能电池的累计装机达到5万千。目前,光伏发电已遍及我国西部各省区、以及中部和东部的部分省、市、自治区,投入总规模已经超过30亿元人民币。太阳能电池高效和低价统一始终是国际开发的目标。

太阳能发电系统的设计需要考虑如下因素:

问题

1、太阳能发电系统在哪里使用?该地日光辐射情况如何?

问题

2、系统的负载功率多大?

问题

3、系统的输出电压是多少,直流还是交流?

问题

4、系统每天需要工作多少小时?

问题

5、如遇到没有日光照射的阴雨天气,系统需连续供电多少天?

问题

6、负载的情况,纯电阻性、电容性还是电感性,启动电流多大?

问题

7、系统需求的数量?

太阳能电池的原理

太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。

一、太阳能发电方式太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。

(1) 光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍.一座1000MW的太阳能热电站需要投资20~25亿美元,平均1kW的投资为2000~2500美元。因此,目前只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。

(2) 光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或

2 并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的

电池板原料:玻璃,EVA,电池片、铝合金壳、包锡铜片、不锈钢支架、蓄电池等。

太阳能电池板新型涂层研发成功

美国伦斯勒理工学院研究人员2008年开发出一种新型涂层,将其覆盖在太阳能电池板上能使后者的阳光吸收率提高到96.2%,而普通太阳能电池板的阳光吸收率仅为70%左右。

新涂层主要解决了两个技术难题,一是帮助太阳能电池板吸收几乎全部的太阳光谱,二是使太阳能电池板吸收来自更大角度的太阳光,从而提高了太阳能电池板吸收太阳光的效率。

普通太阳能电池板通常只能吸收部分太阳光谱,而且通常只在吸收直射的太阳光时工作效率较高,因此很多太阳能装置都配备自动调整系统,以保证太阳能电池板始终与太阳保持最有利于吸收能量的角度。

多元化合物太阳电池

除了常用的单晶、多晶、非晶硅电池之外,多元化合物太阳电池指不是用单一元素半导体材料制成的太阳电池。现在各国研究的品种繁多,大多数尚未工业化生产,主要有以下几种:

a) 硫化镉太阳能电池

b) 砷化镓太阳能电池

c) 铜铟硒太阳能电池(新型多元带隙梯度Cu(In, Ga)Se2薄膜太阳能电池) 全球太阳能电池产业现状

据Dataquest的统计资料显示,目前全世界共有136 个国家投入普及应用太阳能电池的热潮中,其中有95 个国家正在大规模地进行太阳能电池的研制开发,积极生产各种相关的节能新产品。1998年,全世界生产的太阳能电池,其总的发电量达1000兆瓦,1999年达 2850兆瓦。2000年,全球有将近4600 家厂商向市场提供光电池和以光电池为电源的产品。

目前,许多国家正在制订中长期太阳能开发计划,准备在21世纪大规模开发太阳能,美国能源部推出的是国家光伏计划, 日本推出的是阳光计划。NREL光伏计划是美国国家光伏计划的一项重要的内容,该计划在单晶硅和高级器件、薄膜光伏技术、PVMaT、光伏组件以及系统性能和工程、光伏应用和市场开发等5个领域开展研究工作。

美国还推出了太阳能路灯\"计划\",旨在让美国一部分城市的路灯都改为由太阳能供电,根据计划,每盏路灯每年可节电 800 度。日本也正在实施太阳能\"7万套工程计划\", 日本准备普及的太阳能住宅发电系统,主要是装设在住宅屋顶上的太阳能电池发

3 电设备,家庭用剩余的电量还可以卖给电力公司。一个标准家庭可安装一部发电3000瓦的系统。欧洲则将研究开发太阳能电池列入著名的\"尤里卡\"高科技计划,推出了\"10万套工程计划\"。 这些以普及应用光电池为主要内容的\"太阳能工程\"计划是目前推动太阳能光电池产业大发展的重要动力之一。

日本、韩国以及欧洲地区总共8个国家最近决定携手合作,在亚洲内陆及非洲沙漠地区建设世界上规模最大的太阳能发电站,他们的目标是将占全球陆地面积约1/4的沙漠地区的长时间日照资源有效地利用起来,为30万用户提供100万千瓦的电能。计划将从2001年开始,花4年时间完成。

目前,美国和日本在世界光伏市场上占有最大的市场份额。 美国拥有世界上最大的光伏发电厂,其功率为7MW,日本也建成了发电功率达1MW的光伏发电厂。全世界总共有23万座光伏发电设备,以色列、澳大利亚、新西兰居于领先地位。

20世纪90年代以来,全球太阳能电池行业以每年15%的增幅持续不断地发展。据Dataquest发布的最新统计和预测报告显示,美国、日本和西欧工业发达国家在研究开发太阳能方面的总投资, 1998年达570亿美元;1999年646亿美元;2000年700亿美元;2001年将达820亿美元;2002年有望突破1000亿美元。

我国太阳能电池产业现状

我国对太阳能电池的研究开发工作高度重视,早在七五期间,非晶硅半导体的研究工作已经列入国家重大课题;八五和九五期间,我国把研究开发的重点放在大面积太阳能电池等方面。2003年10月,国家发改委、科技部制定出未来5年太阳能资源开发计划,发改委\"光明工程\"将筹资100亿元用于推进太阳能发电技术的应用,计划到2005年全国太阳能发电系统总装机容量达到300兆瓦。

2002年,国家有关部委启动了\"西部省区无电乡通电计划\",通过太阳能和小型风力发电解决西部七省区无电乡的用电问题。这一项目的启动大大刺激了太阳能发电产业,国内建起了几条太阳能电池的封装线,使太阳能电池的年生产量迅速增加。我国目前已有10条太阳能电池生产线,年生产能力约为4.5MW,其中8条生产线是从国外引进的,在这8条生产线当中,有6条单晶硅太阳能电池生产线,2条非晶硅太阳能电池生产线。据专家预测,目前我国光伏市场需求量为每年5MW,2001~2010年,年需求量将达10MW,从2011年开始,我国光伏市场年需求量将大于20MW。

目前国内太阳能硅生产企业主要有洛阳单晶硅厂、河北宁晋单晶硅基地和四川峨眉半导体材料厂等厂商,其中河北宁晋单晶硅基地是世界最大的太阳能单晶硅生产基地,占世界太阳能单晶硅市场份额的25%左右。

在太阳能电池材料下游市场,目前国内生产太阳能电池的企业主要有无锡尚德、南京中电、保定英利、河北晶澳、林洋新能源、苏州阿特斯、常州天合、云南天达光伏科技、宁波太阳能电源、京瓷(天津)太阳能等公司,总计年产能在800MW以上。

2009年,国务院根据工信提供的报告指出多晶硅产能过剩,实际业界人并不认可,科技部已经表态,多晶硅产能并不过剩。 太阳能电池发展市场

当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经

4 济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。

全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。

中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。

目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。

中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。

太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。由此可以看出,太阳能电池市场前景广阔。

利用太阳能电池的离网发电系统

太阳能离网发电系统包括

1、太阳能控制器 (光伏控制器和风光互补控制器)对所发的电能进行调节和控制,一方面把调整后的能量送往直流负载或交流负载,另一方面把多余的能量送往蓄电池组储存,当所发的电不能满足负载需要时,太阳能控制器又把蓄电池的电能送往负载。蓄电池充满电后,控制器要控制蓄电池不被过充。当蓄电池所储存的电能放完时,太阳能控制器要控制蓄电池不被过放电,保护蓄电池。控制器的性能不好时,对蓄电池的使用寿命影响很大,并最终影响系统的可靠性。

2、太阳能蓄电池组的任务是贮能,以便在夜间或阴雨天保证负载用电。

3、太阳能逆变器负责把直流电转换为交流电,供交流负荷使用。太阳能逆变器是光伏风力发电系统的核心部件。由于使用地区相对落后、偏僻,维护困难,为了提高光伏风力发电系统 5 的整体性能,保证电站的长期稳定运行,对逆变器的可靠性提出了很高的要求。另外由于新能源发电成本较高,太阳能逆变器的高效运行也显得非常重要。

太阳能离网发电系统主要产品分类 A、光伏组件 B、风机 C、控制器 D、蓄电池组 E、逆变器 F、风力/光伏发电控制与逆变器一体化电源。

利用太阳能电池的并网发电系统

可再生能源并网发电系统是将光伏阵列、风力机以及燃料电池等产生的可再生能源不经过蓄电池储能,通过并网逆变器直接反向馈入电网的发电系统。

因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用可再生能源所发出的电力,减小能量损耗,降低系统成本。并网发电系统能够并行使用市电和可再生能源作为本地交流负载的电源,降低整个系统的负载缺电率。同时,可再生能源并网系统可以对公用电网起到调峰作用。并网发电系统是太阳能风力发电的发展方向,代表了21世纪最具吸引力的能源利用技术。

太阳能并网发电系统主要产品分类 A、光伏并网逆变器 B、小型风力机并网逆变器 C、大型风机变流器 (双馈变流器,全功率变流器)。

推荐第10篇:传感器

传感器

一、选择题

1.属于传感器动态性指标的是D固有频率

2.传感器能感知的输入量越小,表示传感器的B灵敏度越高 3.下列选项中,适用测量大位移的传感器的类型是C光栅式 传感器

4.压电式位移传感器将C位移 转化为力 5.概率密度函数提供了随机信号B沿幅值域分布的信息

6.影响压电式加速度传感器低频响应能力的是D前置放大器的输入阻抗

7.固体半导体摄像元件CCD是一种CMOS型晶体管开关集成电路 8.红外光电波长为A 2~20 um

9 .C电阻式 温度传感器属于接触式温度传感器

10.交流测速发电机转子有40个齿,被测转速为1200r/min,则该发动机输出电动势的频率为D800Hz

11.周期信号的自相关函数必为A周期偶函数

12.下列气敏元件性能最好的是B厚膜型 13.有用信号频率低于20Hz,可选用A低通滤波电路

14.电参数测振系统的突出优点是C灵敏度较高

15.下列被测物理量适合于使用差动变压器进行测量的是A工业机器的位移

16.非线性度是表示校准曲线B偏离拟合直线 的程度

17.已知函数x(t)的傅里叶变换为X(f),则函数y(t)=2x(3t)的傅里叶变换为B(2/3)X(f/3)

18下列选项中,适用于测量大位移的传感器是C光栅式

19下列传感器中,B压电式传感器 是发电型位移传感器

20.应变片不具有的特点是D体积大 21.压电式加速度传感器,希望其固有频率C尽量高些

22.脉冲式测速发电机以C脉冲频率 为输出信号

23.一阶系统的动态表征 参数是D热敏电阻

24.D热敏电阻 温度传感器不属于热电偶 25.热电偶中产生热电势的条件是C两热电极的两端温度不同

26.温度计使用在超过D90% RH的高湿度区域中就会出现结露

27.有用信号频率高于500Hz,可选用B高通 滤波电路

28.振动的分类按振动规律可分为D随机振动

29.若模/数转换器输出二进制数的位数为10,最大输入信号为2.5V,则该转换器能分辨出的最小输入电压信号为B2.44mV

30.汽车机电一体化的目的有D改善汽车的性能

31.非周期信号的频谱是A连续的 32.最常用的测量角位移的电容传感器是A平板型

33.涡流传感器不可测量C温度

34.将电阻应变片贴在C弹性元件 上,就可以分别做成测力、位移、加速度等参数的传感器

35.电量式压力计不包括B激光式

36.用变磁通式速度传感器测转速时,若传感器转子的齿数越多,则输出的感应电动势的频率A越高

38.视觉传感器以A光电转换 为基础 39.明亮度信息可借助B A\\D转换器 数字化

40.通常用热电阻式传感器测量A温度 41.半导体热敏电阻式传感器随着温度上升,电阻率B迅速下降

43.有信号频率为某一固有频率,可选用C带通 滤波电路

45.汽车自动调整车高的目的是C提高行驶安全性

46.影响压电式加速度传感器低频响应能力的是D前置放大器的输入阻抗

47.按照工作原理分类,固有图像式传感器属于A光电式传感器

48.C半导体三极管 传感器可用于医疗上-50°C~150°C之间的温度测量

49.光电式扭矩传感器的测量精度为A1%

50下列测量传感器中,属于小位移传感器的是C电容式传感器

51.下面C三臂 方式不是应变仪电桥工作方式。

52.压电传感器的选用原则不包括B电动势

53.电缆分布电容对电荷放大器的输出电压C无影响

54.视觉传感器以A光电转换 为基础 55.热电偶中产生热电势的条件是C两热电极的两端温度不同

56.金属热电阻式温度传感器所测量的温度月高,其自由电子的运动A越规则 57.制造半导体陶瓷湿敏元件的材料,主要是不同类型的金属A氯化物

58.高通滤波器所起的作用是只允许B高频信号 通过。

59.信号传输过程中,产生干扰的原因是(C干扰的耦合通道)

60.x(t)为奇函数时,其傅里叶数中只有(B正弦项)

61莫尔条纹光栅传感器的输出是(A数字脉冲式)

62.阻抗头是测量振动系统(D激振力及其响应)

63.在采用限量最大偏差法进行数字滤波时,若限定偏差ΔY≦0.01,本次采样值为0.315,上次采样值为0.301,则本次采样值Yn应选为(A 0.301)

二,填空题

1 传感器的过载能力是指传感器在不致引起规定性能指标永久改变的条件下,允许超过(测量范围)的能力。

2 传感器的精度是表示其输出量与被测物理量的(实际值)之间的符合程度。 3 激光测量系统由激光器.光学元件和(光电转换元件)三部分组成。 4 半导体应变片的工作原理是基于(压阻效应)。

5 加数传感器最常用的有(压电式).应变式和磁致伸缩式。 6 在实际应用中,机电一体化系统对测速发电机的主要要求有输出电压与转速应保持较精确的正比关系.转动惯量小.(灵敏度高)。

7 图像处理的方法有微分法和(区域法)。 8 热电偶式温度传感器的工作原理是(热点效应)。

9 热电偶所产生的热电势是由接触电势和(温差电势)两部分组成。

10 湿敏原件是利用湿敏材料吸收空气中的水分而导致本身(电阻)发生变化的原理而制成的。

11 气敏传感器是一种将检测到的气体成分和(浓度)转化为电信号的传感器。 12 电桥的作用是把电感.电容.电阻的变化转化为(电压或电流)的变化。

13 ADC是将模拟信号转化成(数字)信号。

14 若测量系统无接地点时,屏蔽导体应接到信号源的(负极)。

15 已知某位移传感器的灵敏度为K0,且灵敏度变化量为@K0,则该传感器的灵敏度误差计算公式为(rs=ΔK0/K0×100%)。

16 参量位移传感器的工作原理是将被测量物理量转化为电参数据,即(电阻).电容或电感。

17 应变电桥多采用(交流电桥)。

18 在机械力的作用下铁磁材料内部产生应力或应力变化,使磁导率发生变化,磁阻也发生变化的现象称为(压磁效应)。 19 识别物体前需要先将物体的有关信息输入到计算机内,被输入的信息主要有明亮度信息.颜色信息.(距离信息)。

20 热电阻传感器分为金属热电阻和(热敏电阻)两大类。

21 热电偶通常由热电极.绝缘材料(接线.盒)和保护套组成。

22 在桥式测量电路中,按照(电源)的性质,电桥可分为直流和交流电桥。 23 检测系统中,模拟式显示在读数时容易引起(主观)误差。

24 若,某信号依一定的时间间隔周而复始,则该信号称为(周期信号)。

25 传感器的被测物理量有微小变化时,该传感器就会有较大的输出变化,这说明传感器的(灵敏度)较高。

26 若随机信号X(t).Y(t)的均值都为零,当t-$时,它们的互相关函数Rxy(t)=(0)。 27 发电型位移传感器有磁电型和(压电型)等。

28 在磁压传感器中常用的铁磁材料有(硅钢片)和坡膜合金。

29 压电式压力传感器适于测动态力和冲击力,但不适于测(静态力)。

30 直流测速发电机按定子磁极励磁方式的不同,可分为电磁式和(永磁式)两种。

31 不同的金属两端分别连在一起构成闭合回路,如果两端温度不同,电路中会产生电动势,这种现象称为(热点效应)。 32 热敏电阻分为正温度系数热敏电阻.负温度系数热敏电阻和(临界温度系数)。 33 气敏传感器较广泛用于(防灾报警)。 34 最常用的温度表示方法是(相对湿度)和绝对湿度。

35 RC低通滤波器中RC值愈(小),则其截至频率越低。

36 ADC是将数字信号转化成(模拟)信号。

37 热敏电阻常数B大于零的是(负)温度系数的热敏电阻。

38 量程是指传感器在(测量范围)内的上限与下限之差。

39 光栅式位移传感器有测量线位移的长光栅和测量角位移的(圆光栅)。 40 动态磁头有(1)个绕组。

41 弹性压力敏感元件有波登管.膜片和(波纹管)三类。

42 压电式加速传感器的频率范围广.(动态范围)宽.灵敏度高,故应用较广泛。 43 水份传感器可分为(直流电阻型).高频电阻型.电容率型.气体介质型.近红外型.中子型和核磁共振型等。

44.在桥式电路中,根据电阻(接入方式)的不同,可分为单臂和差动

三.简答题

1 简述传感器的组成及各部分的作用。 答:组成:敏感元件.转化元件.转化电路,作用:敏感元件:直接感受被测物理量,并以确定关系输出另一物理量的元件, 转换元件:将敏感元件输出的非电量转换成电量参数; 转换电路:将转换元件输出的电量转换成便于处理的民量。

2 采用逐次逼近法的模/数转换器主要由哪几部分组成? 答:由电压比较器.数/模转换器.顺序脉冲发生器.数码寄存器和逐次逼近寄存器组成。

3 简述传感器检测系统的干扰来源及抑制干扰的方法。 答:干扰来源:系统的内部干扰和外部干扰。抑制方法:接地.屏蔽.隔离.滤波。 4 公路交通检测汽车流量状态采用哪些传感器? 答:公路交通检测汽车流量状态多采用的传感器有:压电式.电磁式.橡皮管式.超声波式.雷达式.红外线式。

5 传感器的主要性能指标有哪些?

答:主要性能指标:测量范围.量程.过载能力.灵敏度.静态精度.频率特性(动态).阶跃特性(动态).可靠性.使用环境.经济性等。

6 简述电阻应变式测力传感器的工作原理。 答:工作原理:电阻应变式测力传感器是将力作用在弹性元件上,弹性元件在力的作用下产生应变,利用贴在弹性元件上的 应变片将应变转换成电阻的变化,然后利用电桥将电阻变化转换成电压(或电流)的变化,通过测量电压(或电流)的大小 测出力的大小。

7 绘幅一频图说明一阶无源低通.高通.带通滤波器的定义? 答:(1)低通滤波器:低频信号通过,高频信号截止。(2)高通滤波器:高频信号通过,低频信号截止。 (3)带通滤波器:某一段频率信号通过,低于和高于这段频率的信号截止。

8 为什么要对热电偶的参考端温度进行一定方法的处理,一般有哪些方法? 答:原因:热电偶输出电动势只能反映两个结点之间的温度差,为了使输出电动势能正确反映被测温度的真实值,要求参考端

温度为零度,而热电偶实际使用坏境下不能保证参考端温度为零度。因此必须对参考端温度采用一定方法的补偿。一般补偿方

法:恒温法.温度修正法.电桥补偿法.冷端补偿法.电位补偿法。

9 什么叫热敏电阻的正温度系数和负温度系数?

答:正温度系数:在测量温度范围内,其电阻值随温度的升高而增加。负温度系数:在测量温度范围内,其电阻值随温度升高而 下降。

10 有源滤波与无源滤波相比有哪些优点?

答:优点:(1)有源滤波不用电感线圈,因而在体积.重量.价格.线性度等方面具有明显的优越性,便于集成化;(2)由于运

算放大器输入阻抗高,输出阻抗低,可提供良好的隔离性能,并可提供所需增益;(3)可以使截止频率达到很低范围。

11 视觉传感器在机电一体化系统中有哪些应用? 答:应用:(1)进行位置检测;(2)进行图像识别,通过图像识别了解对象的特征以及同其它对象相区别;(3)进行物体形 状.尺寸缺陷的检测。

12 温度测量的方法有哪些?它们的原理有何不同?各适用于什么场合? 答:温度测量的方法:接触式测量和非接触式测量两类。接触式测量的原理是感温元件与被测对象直接物理接触,进行热传导。

非接触式测量的原理是感温元件与被测对象不物理接触,而是通过热辐射进行传递。接触式测量适用于测量易直接接触的一般

物体的温度,非接触式测量适用于测量不易直接接触的高温物体温度。 13 简述测速发电机的工作原理。 答:测速发电机是机电一体化系统中用于测量的自动调节机电转速和一种传感器,它由带有绕组的定子和转子构成。根据电磁

感应原理,当转子绕组供给励磁电压并随被测电动机转动时,定子绕组则产生与转速成正比的感应电动势。

14 传感器与微机的接口方式有哪些? 答:(1)开关量接口方式。(2)数字量接口方式。(3)模拟量接口方式。 15 简述压磁式扭矩仪的工作原理。 答:压磁式扭矩仪的轴是强导磁材料。根据磁弹反应,当轴受扭矩作用时,轴的磁导率发生变化,从而引起线圈感抗变化,通过测量电路即可确定被测扭矩大小。

16 说明薄膜热电偶式温度传感器的主要特点。

答:主要特点:热容量小(或热惯性小),时间常数小,反应速度快。

17 简述压电式传感器分别与电压放大器和电荷放大器相连时各自的特点。 答:传感器与电压放大器连接的电路,其输出电压与压电元件的输出电压成正比,但容易受电缆影响。传感器与电荷放大器连接 的电路,其输出电压与压电元件的输出电荷成正比,电缆电容的影响小。

18 回答下列函数哪些是周期函数.哪些是非周期函数:X1(t)=sinwt.X2(t)=e-t,X3(t)=eSinwt,X4(t)=&(t),X5(t)=sin(1/2*t)

答:X1(t)X3(t)X5(t)是周期函数,X2(t)X4(t)是非周期函数。

19 简述应变片在弹性元件上的布置原则,及哪几种电桥接法具有温度补偿作用。

答:布置原则有(1)贴在应变最敏感部位,使其灵敏度最佳;(2)在复合载荷下测量,能消除相互干扰;(3)考虑温度补偿 作用。单臂电桥无温度补偿作用,差动和全桥方式具有温度补偿作用。

20 涡流式传感器测量位移与其它位移传感器比较,其主要优点是什么?涡流传感器能否测量大位移量?为什么?

答:能实现非接触测量,结构简单,不怕油等介质污染。涡流传感器不能测量大位移量,只有当测量范围较小时,才能保证一定的线性度。

第11篇:传感器

传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。

传感器的定义

国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。

传感器的分类

可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。

根据传感器工作原理,可分为物理传感器和化学传感器二大类 :

传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。

化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。

有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。

常见传感器的应用领域和工作原理列于下表。

1.按照其用途,传感器可分类为:

压力敏和力敏传感器 位置传感器液面传感器 能耗传感器速度传感器 加速度传感器  射线辐射传感器 热敏传感器

2.按照其原理,传感器可分类为:

振动传感器 湿敏传感器

磁敏传感器 气敏传感器

真空度传感器 生物传感器等。

以其输出信号为标准可将传感器分为:

模拟传感器——将被测量的非电学量转换成模拟电信号。

数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。

开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。

第12篇:传感器

一、力传感器

1、应变式力传感器

二、荷重传感器

1、应变式荷重传感器

2、电容式荷重传感器

三、压力传感器

1、应变式压力传感器

2、压阻式压力传感器

3、电容式压力传感器

四、加速度传感器

1、应变式加速度传感器

2、压阻式加速度传感器

3、电容式加速度传感器

五、位移传感器

1、应变式位移传感器

2、电容式位移传感器

六、温度传感器

1、热电阻温度计

2、热敏电阻温度传感器(半导体点温计)

七、流量传感器

1热电阻式流量计

八、液位传感器

1、热敏电阻式液位传感器

2、电容式液位传感器

九、湿度传感器

1、热敏电阻湿度传感器

2、半导体陶瓷湿敏元件

3、氯化锂湿敏电阻

4、有机高分子膜湿敏电阻

5、湿敏电容

十、气敏电阻传感器

1、氧化锡系气敏电阻

2、氧化锌系气敏电阻

3、氧化铁系气敏电阻

(气敏电阻检漏报警器、矿灯瓦斯报警器、一氧化碳报警器) 十

一、厚度传感器

1、电容式测厚仪

十二、物位传感器

1、电容式物位计

第13篇:温度传感器试验论文程序清单

北京交通大学微机原理与接口技术综合实践说明书

附件一:硬件电路原理图

VCCE110UF/25VU1VCC9R18.2KR144.7KDS321DS18B2031P12P13P14P15P16P171234567889C51RESETP10P11P12P13P14P15P16P17EA/VPP20RDWRALE/PAD1123VCC19C130PCRY11.0592C2RXDPSENT0INT0T1INT11U28155P00P01P02P03P04P05P06P0739383736353433322117163012131415161718197910116X1P25P26P27P21P2218TXDU4A7407U4C7407U4E7407U5A7407236910132U4B7407U4D7407U4F7407VCC4128345612780.1K*7PRADGBCEFAD0AD1AD2AD3AD4AD5AD6AD7IO/MRDWRALETMROUTTMRINCEPB0PB1PB2PB3PB4PB5PB6PB7PA0PA1PA2PA3PA4PA5PA6PA7PC0PC1PC22930313233343536511121222324GLE1FGLE2FGLE3FGLE4FGLE5FAAAAAA874CZZ3BBBBB101010101010326272822232425E2VCC8272837PC038PC139PC2125PC3PC4PC5987698769876987698769ZZZZZFFFFFGFGAGAGAGAGAACpDBBBBBP23P24VCCGND30PX240RESETPC3PC4PC5CpDCpDCpDCpDCpD1415121329111020410UFDDDDD123451234512345123451234512EDEZEZEZEZEZELE1DELE2DELE3DELE4DELE5DCCCC1KU6R22.2KK1U3AR30.1KE34.7UFVCC74LS1412P12PC01275452U12A3LE1775452U12B5LE2275452U13A3LE3LED8U7LED8U8LED8U9LED8U10LED8U11LED8PC16CR10PC2ELE6DVCC1R42.2KK2U3BR50.1KE44.7UFVCCVCCF174LS1434P13PC367U13B5LE4PC412U14A3LE5PC567U14B5LE6754527545275452VCCR62.2KK3U3CR70.1K74LS14E54.7UFVCCR120.1K56P14P16R113KT19013FMQ-3VAD212E747UFC30.1UFC40.01UFC50.01UFR82.2KK4U3DR90.1KE64.7UF74LS1498P15P1713U3F74LS1412L1R130.3KVCC5B6B26GLE6F25

北京交通大学微机原理与接口技术综合实践说明书

源程序清单

TL

EQU 30H

;DS18B20温度传感器的第一个字节

TH

EQU 31H

;DS18B20温度传感器的第二个字节

TEM EQU 32H

;温度值

TMIN

EQU

33H

;温度下限

TMAX EQU

34H

;温度上限

BZ1

BIT

00H

;标志位1

BIT01

EQU

20H

BIT02

EQU

21H

BZ2 EQU

22H

BZ3

EQU

23H

DQ

BIT

P1.0

主程序

ORG

0000H MAIN: MOV SP,#70H

MOV A,#00H

MOV P1,A

MOV TMIN,#0FH

MOV TMAX,#28H

MOV BZ2,#00H

MOV BZ3,#00H

LOOP: LCALL

GET_TEMPER

LCALL

TEMPER

LCALL

KEY

MOV

A,BZ3

JNZ

NEXT

LCALL

WARN

NEXT: LCALL

DISPLAY

LJMP

LOOP

;温度获得程序

ORG

0100H GET_TEMPER:

LCALL INIT

JB

BZ1,S22

LJMP

GET_TEMPER S22: MOV

A,#0CCH

LCALL WRITE

MOV

A,#44H

LCALL WRITE

NOP GET01: LCALL INIT

JB

BZ1, GET02

;标志位2 ;标志位3 ;蜂鸣器发光二极管复位(低电平) ;给上限赋值

;给下限赋值 ;按健1标志位 ;按键4标志位

;读取此时的温度值

;把DS18B20传来温度转化为单个值

;调用键盘程序

;若BZ3为1,则跳转NEXT ;调用报警子程序

;调用显示程序 ;主程序循环 ;若BZ为一,则跳转S22 ;跳过ROMA匹配 ;发启动转换命令 2

北京交通大学微机原理与接口技术综合实践说明书

LJMP GET01 GET02: MOV A,#0CCH

;跳过ROM匹配

LCALL WRITE

MOV A,#0BEH

;发出读温度命令

LCALL WRITE

LCALL READ

;采集温度

RET

;初始化DS18B20

ORG

0200H INIT: SETB

DQ

;定时入口

NOP

CLR

DQ

MOV

R0, #0F0H

DJNZ

R0, $

;480?s复位脉冲(低电平)

SETB

DQ

MOV

R0, #1EH

DJNZ

R0, $

;等待60?s

JNB

DQ, INI1

;检测到低电平则置标志位

LJMP

INI2 INI1: SETB

BZ1

;置标志位,DS18B20存在

LJMP

INI3 INI2: CLR

BZ1

;清标志位,DS1B820不存在

LJMP

INI4 INI3: MOV

R0, #36H

DJNZ

R0, $

;低电平持续108?s INI4: SETB

DQ

RET

写DS18B20

ORG

0300H WRITE: MOV R2,#08H

;循环8次写入一个字节

CLR C WR1: CLR DQ

;数据线变低电平产生写起始信号

MOV R3,#03H

DJNZ R3,$

;低电平持续6s

RRC A

;写入位从A移到Cy

MOV DQ,C

;命令字按位依次送DS18B20

MOV R3,#0FH

DJNZ R3,$

;写过程持续30s

SETB DQ

DJNZ R2,WR1

RET

读DS18B20的程序,从DS18B20中读出两个字节的数据

ORG

0400H

北京交通大学微机原理与接口技术综合实践说明书

READ: MOV R4,#02H

;将温度高位和低位元从DS18B20中读出

MOV R0,#TL

;低位元存入TL,高位存入TH RE00: MOV R2,#08H

;循环8次读一字节 RE01: CLR C

SETB DQ

NOP

NOP

;高电平持续2s

CLR DQ

NOP

NOP

NOP

;数据线低电平3s

SETB DQ

;数据线升高电平产生读起始信号

MOV R5, #04H

DJNZ R5, $

;等待8s

MOV C, DQ

MOV R3, #0CH

DJNZ R3, $

;读周期持续24s

RRC A

;读取数据移入A

DJNZ R2, RE01

MOV @R0, A

;读完1字节数据移入A

INC

R0

DJNZ R4, RE00

;读入2字节

RET

将从DS18B20中读出的温度数据进行转换

ORG

0500H TEMPER: MOV

A, #0F0H

ANL A, TL

;低字节高4位存入A

SWAP A

;A中高低四位互换

MOV TEM, A

MOV A, TL

;TL低四位移入A

JNB ACC.3,TEMPER01 ;去小数部分取整数

INC

TEM

;对小数部分四舍五入 TEMPER01:MOV A, TH

ANL A, #07H

;高字节低四位移入A

SWAP A

;高低四位互换

ORL A, TEM

;实际温度高低四位装配

MOV TEM,A

;把DB18B20采集温度送TEM

RET

;比较子程序

ORG

0600H WARN: CLR

C

MOV A, TEM

SUBB A,TMIN

;把现在的温度与下限比较

北京交通大学微机原理与接口技术综合实践说明书

JC

LIGHT

MOV A, TEM

SUBB

A,TMAX

;把现在的温度与上限比较

JNC ALARM FH: RET ALARM:SETB P1.6

;开启蜂鸣器

SJMP FH LIGHT: SETB P1.7

SJMP FH

按键子程序

ORG

0700H KEY: MOV A, #3FH

MOV P1, A

MOV A,P1

JB

ACC.2,KEY1

JB

ACC.3,KEY2

JB

ACC.4,KEY3

JB

ACC.5,KEY4 DONE: RET KEY1: INC

TMAX

LCALL

WARN

LCALL

DISPLAY

AJMP

DONE KEY2: DEC

TMAX

LCALL

WARN

LCALL

DISPLAY

AJMP

DONE KEY3: INC

TMIN

LCALL

WARN

LCALL

DISPLAY

AJMP

DONE KEY4:DEC

TMIN

LCALL

WARN

LCALL

DISPLAY

AJMP

DONE ;显示子程序

ORG

1000H DISPLAY:MOV DPTR, #0100H

MOV A, #0EH

MOVX @DPTR, A

MOV R5, #0FH

LOOP1: MOV R2, #01H

MOV A, TMAX

ACALL FB

ACALL DIR

;开启二极管发光 ;扫描键盘 ;按健1按下则调用KEY1 ;按健2按下则调用KEY2 ;按健3按下则调用KEY3 ;按健4按下则调用KEY4 ;LED端口地址赋给程序 ;方式控制字送A ;温度循环显示15次 显示温度上限值 5

;北京交通大学微机原理与接口技术综合实践说明书

MOV

A, TEM

;显示当前温度值

ACALL

FB

ACALL

DIR

MOV

A, TMIN ;显示温度下限值

ACALL

FB

ACALL

DIR

DJNZ

R5, LOOP1

RET

;将温度值转换为BCD码

ORG

1100H FB: MOV

B,#0AH

;分半程序

DIV

AB

MOV

BIT01,A

MOV

BIT02,B

RET

ORG

1200H DIR: MOV

R0,#BIT01

MOV

A,R2

MOV

R3,#02H LD0: MOV

DPTR,#0103H ;C口地址送DPTR

MOVX

@DPTR,A

;字位码送C口

MOV

DPTR,#0102H ;B口地址送DPTR

MOV

A,@R0

;地址偏移量送A

ADD

A,#0CH

;修正A地址

MOVC

A,@A+PC

;查字形码表 DIR1: MOVX

@DPTR, A

;字形码送B口

MOV

R7,#02H

;设定延时时间

ACALL DL

;延时1ms

INC

R0

;修正显示缓冲区指针

MOV

A, R2

;字位码送A

RL

A

;显示下一位

MOV

R2, A

DJNZ

R3, LD0

RET DSEG0: DB 3FH, 06H, 5BH, 4FH, 66H, 6DH DSEG1: DB 7DH, 07H, 7FH, 6FH, 77H, 7CH DSEG2: DB 39H, 5EH, 79H, 71H, 73H, 21H DSEG3: DB 31H, 6EH, 40H, 3EH, 00H, 00H DL: MOV

R6, #0FFH DL6: DJNZ

R6, DL6

DJNZ

R7, DL

RET

END

第14篇:传感器设计及应用实例论文

压力传感器(压力变送器)的原理及应用

概 述:压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用

1、应变片压力传感器原理与应用

力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。

在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是 A/D转换和CPU)显示或执行机构。

它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。

电阻应变片的工作原理

金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示:

式中:ρ——金属导体的电阻率(Ω·cm2/m)

S——导体的截面积(cm2)

L——导体的长度(m)

我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情况。 来源: http://tede.cn

2、陶瓷压力传感器原理及应用

抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥 (闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。通过激光标定,传感器具有很高的温度稳定性和时间稳定性,传感器自带温度补偿0~70℃,并可以和绝大多数介质直接接触。

陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达-40~135℃,而且具有测量的高精度、高稳定性。电气绝缘程度 >2kV,输出信号强,长期稳定性好。高特性,低价格的陶瓷传感器将是压力传感器的发展方向,在欧美国家有全面替代其它类型传感器的趋势,在中国也越来越多的用户使用陶瓷传感器替代扩散硅压力传感器。

3、扩散硅压力传感器原理及应用

工作原理

被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。 来源:www.daodoc.com

4、蓝宝石压力传感器原理与应用

利用应变电阻式工作原理,采用硅-蓝宝石作为半导体敏感元件,具有无与伦比的计量特性。

蓝宝石系由单晶体绝缘体元素组成,不会发生滞后、疲劳和蠕变现象;蓝宝石比硅要坚固,硬度更高,不怕形变;蓝宝石有着非常好的弹性和绝缘特性(1000 OC以内),因此,利用硅-蓝宝石制造的半导体敏感元件,对温度变化不敏感,即使在高温条件下,也有着很好的工作特性;蓝宝石的抗辐射特性极强;另外,硅 -蓝宝石半导体敏感元件,无p-n漂移,因此,从根本上简化了制造工艺,提高了重复性,确保了高成品率。

用硅-蓝宝石半导体敏感元件制造的压力传感器和变送器,可在最恶劣的工作条件下正常工作,并且可靠性高、精度好、温度误差极小、性价比高。

表压压力传感器和变送器由双膜片构成:钛合金测量膜片和钛合金接收膜片。印刷有异质外延性应变灵敏电桥电路的蓝宝石薄片,被焊接在钛合金测量膜片上。被测压力传送到接收膜片上(接收膜片与测量膜片之间用拉杆坚固的连接在一起)。在压力的作用下,钛合金接收膜片产生形变,该形变被硅-蓝宝石敏感元件感知后,其电桥输出会发生变化,变化的幅度与被测压力成正比。

传感器的电路能够保证应变电桥电路的供电,并将应变电桥的失衡信号转换为统一的电信号输出(0-5,4-20mA或0-5V)。在绝压压力传感器和变送器中,蓝宝石薄片,与陶瓷基极玻璃焊料连接在一起,起到了弹性元件的作用,将被测压力转换为应变片形变,从而达到压力测量的目的。

5、压电压力传感器原理与应用

压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。

现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。

压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。

压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。

压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

BP01型压力传感器及其在便携式电子血压计中的应用

介绍了德利康公司的BP01型压力传感器的主要性能和参数给出了一个用BP01作传感器组成的便携式电子血压计的实际电路,并对该应用电路的工作原理进行了说明,同时给出了该便携式电子血压计电路的设计和调试方法。

1 概述

BP01 型压力传感器是为监测血压而专门设计的,主要用于便携式电子血压计。它采用精密厚膜陶瓷芯片和尼龙塑料封装,具有高线性、低噪声和外界应力小的特点;采用内部标定和温度补偿方式,从而提高了测量的精度、稳定性以及可重复性,在全量程范围内,精度为±1%,零点失调不大于±300μV。

2 BP01的主要性能参数

BP01的内部等效电路和外形封装如图1所示;表1所列为BP01在电源电压Vs为5.0V、环境温度TA为25℃时的主要性能参数。

BP01的极限参数如下:

·最大工作电压:20VDC;

·最大耐压:1500 mmHg;

·工作温度范围:0~70℃;

·引脚焊接温度(最大值):250℃(2~4秒)。

3 基于BP01的电子血压计

3.1工作原理

用BP01构成的便携式电子血压计的原理电路如图2所示,它由偏置电源电路(A

1、A2)、前置处理电路(A3~A6)、显示电路(A7)和压力传感器(BP01)组成,该血压计的血压测量范围为0~200mmHg,分辨率为0.1mmHg,工作电源为一节9V迭层电池。现将血压计中各主要电路的工作原理分述如下:

a.偏置电源电路

电源电路由带有内置参考电压的双运放LM10组成,A1构成同相放大器,A2构成跟随器,它们的作用是将内置的参考电压放大后用作压力传感器BP01的偏置电压Vs,其Vs的值由下式决定:

Vs=Vref(1+R2/R3)

式中:Vref为LM10的内置参考电压。其值为200mV,将此值连同电路中的R2和R3的值代入上式即可求得偏置电压Vs的值为5V。

b.前置处理电路

前置处理电路由A3~A6四个运算放大器组成,其中A3构成失调偏置电路以对电路失调进行补偿;A5构成跟随器,用于对压力传感器BP01的输出信号进行隔离缓冲;A

4、A6构成放大电路,其增益AV由下式决定:

AV=1+(R1/RT)

若忽略失调,前置处理电路的输出电压Vout为:

Vout=2(1+R1/RT)VIN

式中:VIN为压力传感器BP01的输出电压。

c.显示电路

显示电路选用三位半的显示驱动器。工作时,压力传感器BP01的输出经前置处理电路放大后,由显示驱动电路来驱动LCD,以读出测量的血压值。

3.2调试方法

a.零压输出调整

在零压输出时,调整失调电位器RP1,在血压计的显示值为000.0时,即可认为完成了零压输出调整。

b.前置电路增益的调整

压力传感器BP01的满量程输出与偏置电压有一定的关系,当5V偏置时,在200mmHg压力下的输出为10mV,其对应的显示驱动电路的输入为200mV,因此前置电路的增益AV为200mV/10mV,这样,利用前面Av的计算公式即可反推出增益电阻RT的值。

若选取电阻R1为10kΩ,则增益电阻RT应为1.1kΩ。调试时可先用电位器调整输出值,再用万用表测出该电位器的阻值,最后再换成固定电阻。

c.满量程调整

满量程调整时,先在显示电路的输入端加上200mV电压,然后调整电位器RP2,使其读数为199.9mmHg即可。

上调整完成之后,一般应多重复几次,以使显示值可靠地符合精度要求。

3.3元器件的选择

为保证测量精度,上述电路的外围元器件的选择也是一个不容忽视的重要环节。一般情况下,电位器RP

1、RP2应选用1%精度的金属膜多圈电位器;电阻应选用1%精度的金属膜电阻器;电容一般选用聚脂薄膜或者云母电容。

4 结束语

在使用压力传感器BP01和其它器件设计便携式电子血压计时,应注意的是:对于不同的偏置电压,其输出也不同,因而前置处理电路的增益应做相应的调整,以满足满量程的不同要求。

第15篇:第九章热电式传感器小论文

热电式传感器论文

09电信一班

2009221105200111

韩莹

摘要:热电式传感器是一种将温度变化转化为电量变化的装置。在各种热电式传感器中,以将温度量转换为电势和电阻的方法最为普遍。其中最常用于测量温度的是热电偶和热电阻。这两种热电式传感器目前在工业生产中已得到广泛应用,并且有与其相配套的显示仪表与记录仪表。

关键字:热电式、热电偶、工作原理、应用

热电式传感器定义

热电式传感器是将温度变化转换为电量变化的装置。它是利用某些材料或元件的性能随温度变化的特性来进行测量的。例如将温度变化转换为电阻、热电动势、热膨胀、导磁率等的变化,再通过适当的测量电路达到检测温度的目的。把温度变化转换为电势的热电式传感器称为热电偶;把温度变化转换为电阻值的热电式传感器称为热电阻。

工作原理

热电偶是利用热电效应制成的温度传感器。所谓热电效应,就是两种不同材料的导体(或半导体)组成一个闭合回路,当两接点温度T和T0不同时,则在该回路中就会产生电动势的现象。由热点效应产生的电动势包括接触电动势和温差电动势。接触电动势是由于两种不同导体的自由电子密度不同而在接触处形成的电动势。其数值取决于两种不同导体的材料特性和接触点的温度。温差电动势是同一导体的两端因其温度不同而产生的一种电动势。其产生的机理为:高温端的电子能量要比低温端的电子能量大,从高温端跑到低温端的电子数比从低温端跑到高温端的要多,结果高温端因失去电子而带正电,低温端因获得多余的电子而带负电,在导体两端便形成温差电动势。热电阻传感器是利用导体的电阻值随温度变化而变化的原理进行测温的。热电阻广泛用来测量-200~850℃范围内的温度,少数情况下,低温可测量至1K,高温达1000℃。标准铂电阻温度计的精确度高,作为复现国际温标的标准仪器。

热电传感器的应用

1.无触点恒温控制器:无触点自动温控电路如图5-28所示。其控温范围从室温到150℃,精度为±0.1℃。测温用的热敏电阻RT作为偏置电阻接在T

1、T2组成的差分放大器电路内,当温度变化时,热敏电阻阻值变化,引起T1集电极电流变化,影响二极管D支路电流,从而使电容C充电电流发生变化,则电容电压达到单结晶体管BT峰点电压的时刻发生变化,即单结晶体管的输出脉冲产生相移,改变了可控硅SCR的导通角,改变了加热丝的电源电压,从而达到自动控温的目的。图中电位器Rp用以调节不同的设定温度。

Rp 220V

RT

T1

T2

D C

加热丝

BT

220v~ SCR 图 5-28 无触点恒温控制器电路图

2.室内空气加热器

PTC热敏元件由于具有升温快、能自控、安全节能、组成电路简单等特点,因而在各种取暖器上得到了广泛的应用。图5-29是空气加热器的电路结构示意图,其中PTC元件上有许多小孔,后面装有散热用的鼓风机。当接通电源后,PTC元件由于阻值小会有大电流通过而开始加热,鼓风机同时工作,它吹出的空气把PTC元件产

生的热量带向室内空间。由于空气流速和PTC热量的自动平衡,出风口的温度达50~60℃。当鼓风机由于故障原因停止转动时,PTC元件的阻值会急剧增大,从而限制了电流的通过,温度便下降到很低,可以避免意外事故的发生。

外壳

入气口

~220V

θ

PTC 鼓风机

PTC元件

PTC元件的形状常用的有方形板状和圆盘状两种。方形板状的尺寸为70mm×70mm×10mm,在厚度方向上约1800个小孔。圆盘状的尺寸为¢50×(3.5~7.0)mm。PTC元件的功率为300~1000W。 3.自动门控制电路

图5-30是自动门控制电路原理图。人体移动探测采用新型热释电红外线探测模块HN911。场效应管T1用作延时控制,通过调节电位器RP1便可改变延时控制的时间。光耦合器件MOC3020起交直隔离作用。当无人通过自动门时,HN911输出端为低电平, T1无控制信号输出,双向晶闸管T2关闭,负载电机不工作,门处于关闭状态。当有人行走接近自动门时,HN911模块检知到人体红外能量,输出端1为高电平输出,双向晶闸管导通,负 图5-29 室内空气加热器电路及结构示意图

载电机工作,打开自动门。当自动门运行到位时,由限位开关S切断电源。由于HN911模块的输出端2输出的电平正和1端输出的电平相反,故可用2端的输出信号控制自动门关闭。

+5V RP1 增 益 调 4 3 5

R1

MOC3020 R2

负载 T2

S

~220V HN911 2 6

R2

+ T1 C1

关门控 制电路

图5-30 自动门控制电路原理图

4.客房火灾报警器

图5-31是客房火灾报警器原理电路图。在每个客房中安装有由TT201温控晶闸管组成的火灾传感器,在每一路中又都串有发光二极管LED,其总线串接报警电路再与电源相连。为及时了解灾情,发光二极管及报警电路均设置在总监控台。若某一房间发生火灾时,房内的环境温度升高,当环境温度升高到温控晶闸管的开启电压温度时,该路的温控晶闸管导通,相应发光二极管发光显示,同时,由于温控晶闸管导通会使总线电流增大,产生报警信号,再经报警电路检测处理后,立即发出火灾警笛声响。

报警电路

LED TT201 房间1 房间2 房间3 房间4 图5-31 客房火灾报警器电路图

5.液位报警器

图5-32是采用集成温度传感器的液位报警器的原理电路。它由两个AD590集成温度传感器、运算放大器及报警电路等组成,其中传感器B2设

置在警式液面的位置,传感器B1设置在外部。正常情况下,两个传感器在相同的温度条件下,调节电位器RP1,使运算放大器输出为零。当液面升高时,传感器B2将会被液体淹没,由于液体温度与环境温度的差别,使运算放大器工作输出不为零的控制信号,驱动报警电路报警。

+U

B1 B2 液面 AD

RP1

R1 50M AD590

R2

- IC

+ 741 R3

报警

图 5-32 液位报警器原理图

小结:

热电式传感器是一种将温度变化转换为电量变化的装置。在各种热电式传感器中,以将温度量转换为电势值和电阻值的方法最为普遍。如:热电偶就是将温度转换为电势值的传感器;金属热电阻和半导体热敏电阻将温度转换为电阻值。它们在工业生产中都得到了广泛的应用。利用半导体PN结的伏安特性与温度之间的关系,可以制成温敏二极管、温敏三极管、温敏晶闸管以及集成温度传感器,它们在窄温场中也得到了十分广泛的应用。除此之外,本章还讨论了热释电红外传感器及其应用。学完本章之后,初步掌握热电偶、金属热电阻、半导体热敏电阻、集成温度传感器,热释电红外传感器的工作原理及应用。 参考文献:

[1] 《传感器原理设计与应用》 国防科技大学出版社 刘迎春、叶湘滨编著

[2] 《传感技术》 科学技术文献出版社 李春茂编著

第16篇:传感器技术应用概述论文 (作业)

兰州理工大学技术工程学院

传感器与自动检测技术

结课论文

题目:称重传感器在电梯中的应用

学号:11230319

姓名:李永健 班级:电力传动一班

传感器与检测技术结课论文

兰州理工大学技术工程学院

摘要:传感器技术是实现测试和自动控制的重要环节。它的主要特征是能准确地传递和检测出某一形态的信息,并将它转换成另一形态的信息。随着科学技术的迅猛发展,其越来越广泛的应用于科学技术的各个领域。传感器是一种检测装置,是实现自动检测和自动控制的首要环节。它能感受到被测量的信息,将检测感受到的信息,并按照一定的规律转换成可用输出信号,来满足信息的传输、处理、存储、显示、记录以及控制等的要求。在机电一体化的系统中,传感器处系统之首,是机电一体化系统达到高水平的有效保证。随着人类探知领域的不断深入,各种信息的传递速度将越来越快, 处理信息的能力也将越来越强,因此,就要求相对应的信息采集传感技术也要跟上发展的步伐,这也就决定了传感器将越来越被广泛运用、无处不在,同时,传感器也与我们的生活息息相关。

关键词:称重传感器

电梯

应用 一.引言

通过学习和查阅,我发现传感器在现代生产中有着非常普遍的应用,在实际生产过程中传感器配合电脑中控系统可以实时的检测生产中的每一个指标,以便能够实时的做出相应的调整,保证了生产过程中的安全、高效。据初步调查统计,目前在众多大中型商场、酒店、学校、娱乐场所等客流量大的地方都使用了智能电梯。它的普及无疑给人们的生活传感器与检测技术结课论文

兰州理工大学技术工程学院

带来了极大的便利,节省了很多宝贵的时间,可以说,现代智能电梯技术已经相当成熟。但是,据观察发现,电梯在运行效率方面还存在着一些问题,于是提出了改进现代智能电梯的设想。此篇主要讨论称重传感器在电梯中的作用,以及电梯中各个部位传感器类型及其功用。

二.传感器的选择要求

2.1、根据测量对象与测量环境确定传感器的类型

要进行个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。

2.

2、灵敏度的选择

通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信传感器与检测技术结课论文

兰州理工大学技术工程学院

号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。

2.3、频率响应特性

传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差。

2.4、稳定性

传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。传感器与检测技术结课论文

兰州理工大学技术工程学院

传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。

2.5、线性范围

传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。

2.6、精度

精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对传感器与检测技术结课论文

兰州理工大学技术工程学院

某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求。

三.称重传感器

3.1称重传感器简介

电阻应变式称重传感器是基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在它表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。

由此可见,电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。下面就这三方面简要论述。

称重传感器

一、电阻应变片

传感器与检测技术结课论文

兰州理工大学技术工程学院

电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。他的一个重要参数是灵敏系数K。我们来介绍一下它的意义。

设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R: R = ρL/S(Ω)

1--1 当他的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。

对式(1--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有:

ΔR = ΔρL/S + ΔLρ/S –ΔSρL/S2

1--2 用式(1--1)去除式(1--2)得到

ΔR/R = Δρ/ρ + ΔL/L – ΔS/S

1--3 另外,我们知道导线的横截面积S = πr2,则 Δs = 2πr*Δr,所以

ΔS/S = 2Δr/r

1--4 从材料力学我们知道

Δr/r = -μΔL/L

1--5 其中,负号表示伸长时,半径方向是缩小的。μ是表示材料横向效应泊松系数。把式(1--4)(1--5)代入(1--3),有: 传感器与检测技术结课论文

兰州理工大学技术工程学院

ΔR/R = Δρ/ρ + ΔL/L + 2μΔL/L =(1 + 2μ(Δρ/ρ)/(ΔL/L))*ΔL/L = K *ΔL/L (2--6)

其中

K = 1 + 2μ +(Δρ/ρ)/(ΔL/L)

1--7 式(1--6)说明了电阻应变片的电阻变化率(电阻相对变化)和电阻丝伸长率(长度相对变化)之间的关系。

需要说明的是:灵敏度系数K值的大小是由制作金属电阻丝材料的性质决定的一个常数,它和应变片的形状、尺寸大小无关,不同的材料的K值一般在1.7—3.6之间;其次K值是一个无因次量,即它没有量纲。

在材料力学中ΔL/L称作为应变,记作ε,用它来表示弹性往往显得太大,很不方便

常常把它的百万分之一作为单位,记作με。这样,式(1--6)常写作: ΔR/R = Kε

(1--8)

二、弹性体

弹性体是一个有特殊形状的结构件。它的功能有两个,首先是它承受称重传感器所受的外力,对外力产生反作用力,达到相对静平衡;其次,它要产生一个高品质的应变场(区),使粘贴在此区的电阻应变片比较理想的完成应变枣电信号的转换任务。以称重传感器的弹性体为例,来介绍一下其中的应力分布。

设有一带有肓孔的长方体悬臂梁。

传感器与检测技术结课论文

兰州理工大学技术工程学院

肓孔底部中心是承受纯剪应力,但其上、下部分将会出现拉伸和压缩应力。主应力方向一为拉神,一为压缩,若把应变片贴在这里,则应变片上半部将受拉伸而阻值增加,而应变片的下半部将受压缩,阻值减少。下面列出肓孔底部中心点的应变表达式,而不再推导。

ε = (3Q(1+μ)/2Eb)*(B(H2-h2)+bh2)/ (B(H3-h3)+bh3)

2--9 其中:Q--截面上的剪力;E--扬氏模量:μ—泊松系数;B、b、H、h—为梁的几何尺寸。

需要说明的是,上面分析的应力状态均是―局部‖情况,而应变片实际感受的是―平均‖状态。

三、检测电路

检测电路的功能是把电阻应变片的电阻变化转变为电压输出。因为惠斯登电桥具有很多优点,如可以抑制温度变化的影响,可以抑制侧向力干扰,可以比较方便的解决称重传感器的补偿问题等,所以惠斯登电桥在称重传感器中得到了广泛的应用。因为全桥式等臂电桥的灵敏度最高,各臂参数一致,各种干扰的影响容易相互抵销,所以称重传感器均采用全桥式等臂电桥。

3.2称重传感器工作原理

负荷传感器是称重传感器、测力传感器的统称,用单项参数评价它的计量特性。

传感器与检测技术结课论文

兰州理工大学技术工程学院

电阻应变式称重传感器主要由弹性元件、电阻应变片、测量电路和传输电缆4部分组成。电阻应变片贴在弹性元件上,弹性元件受力变形时,其上的应变片随之变形,并导致电阻改变。测量电路测出应变片电阻的变化并变换为与外力大小成比例的电信号输出。电信号经处理后以数字形式显示出被测物的质量。电阻应变式称重传感器的称量范围为几十克至数百吨,计量准确度达1/1000~1/10000,结构较简单,可靠性较好。大部分电子衡器都使用这种传感器。电阻应变式称重传感器是基于这样一个原理:弹性体弹性元件,敏感梁在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片转换元件也随同产生变形,电阻应变片变形后,它的阻值将发生变化增大或减小,再经相应的测量电路把这一电阻变化转换为电信号电压或电流,从而完成了将外力变换为电信号的过程。在测量过程中,重量加载到称重传感器的弹性体上会引起塑性变形。电阻应变式称重传感器的工作过程应变正向和负向通过安装在弹性体上的应变片转换为电子信号。最简单的弯曲梁称重传感器只有一个应变片。通常,弹性体和应变片通过多种方式来结合,类似外壳密封部件等来保护应变片。

称重传感器在选用时要考虑到很多因素,实际的使用当中我们主要从下列几个因素考虑。称重传感器的量程根据你的用途,称重传感器的量程选择可依据秤的最大称量值、选传感器与检测技术结课论文

兰州理工大学技术工程学院

用传感器的个数、秤体自重、可产生的最大偏载及动载因素综合评价来决定。一般来讲,传感器的量程越接近分配到每个传感器的载荷,其称量的准确度就越高。但是在实际的使用当中,由于加在传感器上的载荷除被称物体外,还存在秤体自重、皮重、偏载及振动冲击等载荷,因此选用传感器时,要考虑诸多方面的因素,保证传感器的安全和寿命。其次称重传感器的准确度等级包括传感器的非线性、蠕变、重复性、滞后、灵敏度等技术指标。在选用的时候不应该盲目追求高等级的传感器,应该考虑电子衡的准确度等级和成本。一般情况下,选用传感器的总精度为非线性、不重复性和滞后三项指标的之和的均方根值略高于秤的精度。称重传感器形式的选择主要取决于称重的类型和安装空间,保证安装合适,称重安全可靠;另一方面要考虑厂家的建议。对于传感器制造厂家来讲,它一般规定了传感器的受力情况、性能指标、安装形式、结构形式、弹性体的材质等。

四.称重传感器在电梯中的功用

智能电梯为在楼宇中的作用是非常大的,为人们的生活提供了很大的便利。智能电梯中应用的传感器是非常多的,比如称重传感器,光电传感器等。以下主要说明一下称重传感器在智能电梯中的作用,智能电梯中安装了称重传感器装置更加保证了电梯的安全运行。

电梯上一般应用称重传感器为桥式称重传感器和轮辐传感器与检测技术结课论文

兰州理工大学技术工程学院

式称重传感器,它们应用的特点主要区分在安装方式上。而他们的工作原理都是一样,由称重传感器将重量转换成电信号经传输电缆与控制仪连接,经控制仪求和放大器、A/D 转换器、单片机运算,实现电子称重。当轿厢内的重量达到或超过设定值的95%、102%时,控制仪内满载、超载继电器分别动作,与电梯控制系统连接,使电梯安全、可靠的运行。

控制仪正常工作后,每月应观察仪器是否工作正常:观察控制仪数码管显示是否随载荷变化而变化,每隔三个月(90天)控制仪按照以下步骤需要做一次检查保养。首先就是必须检查称重传感器安装螺栓是否有松动,将称重传感器安装螺栓紧固。

2、检查控制仪超载功能:方法一:将电梯停靠底层,将控制仪侧称重传感器连接线拔下,控制仪作一次清零操作,然后将称重传感器与控制仪连接好,应显示超载以上,如果显示低于超载值,加入适当的重量,使控制仪显示超载以上,此时检查是否输出超载信号。方法二:将电梯停靠底层,控制仪断电,检查电梯是否接收到超载信号。以上两种方法只要有一种方法检查出超载信号正常即可。

3、以上两个步骤检查正常之后,需要将电梯停到底层,作一次清零操作。

4、将电梯放入一定的载荷检查控制仪显示是否在正常范围之内,例如800公斤的电梯,放入100公斤重物,因摩擦因素,控制仪数码管应显示在8%~14%之间,证明控制仪正常。如不在此范围内,应按照说明书调试步骤传感器与检测技术结课论文

兰州理工大学技术工程学院

进行修正。不难看出智能电梯的称重传感器是相当的重要,称重传感器的性能决定了电梯的性能以及安全。

智能电梯为在楼宇中的作用是非常大的,为人们的生活提供了很大的便利。智能电梯中应用的传感器是非常多的,比如称重传感器,光电传感器等。大家对于传感器在智能电梯中发挥着什么作用都了解过吗?今天小编就来为大家主要说明一下称重传感器在智能电梯中的作用,智能电梯中安装了称重传感器装置更加保证了电梯的安全运行。

电梯上一般应用称重传感器为桥式称重传感器和轮辐式称重传感器,它们应用的特点主要区分在安装方式上。而他们的工作原理都是一样,由称重传感器将重量转换成电信号经传输电缆与控制仪连接,经控制仪求和放大器、A/D 转换器、单片机运算,实现电子称重。当轿厢内的重量达到或超过设定值的95%、102%时,控制仪内满载、超载继电器分别动作,与电梯控制系统连接,使电梯安全、可靠的运行。

控制仪正常工作后,每月应观察仪器是否工作正常:观察控制仪数码管显示是否随载荷变化而变化,每隔三个月(90天)控制仪按照以下步骤需要做一次检查保养。首先就是必须检查称重传感器安装螺栓是否有松动,将称重传感器安装螺栓紧固。

2、检查控制仪超载功能:方法一:将电梯停靠底层,将控制仪侧称重传感器连接线拔下,控制仪作一次清零操作,然后将称重传感器与控制仪连接好,应显示超载传感器与检测技术结课论文

兰州理工大学技术工程学院

以上,如果显示低于超载值,加入适当的重量,使控制仪显示超载以上,此时检查是否输出超载信号。方法二:将电梯停靠底层,控制仪断电,检查电梯是否接收到超载信号。以上两种方法只要有一种方法检查出超载信号正常即可。

3、以上两个步骤检查正常之后,需要将电梯停到底层,作一次清零操作。

4、将电梯放入一定的载荷检查控制仪显示是否在正常范围之内,例如800公斤的电梯,放入100公斤重物,因摩擦因素,控制仪数码管应显示在8%~14%之间,证明控制仪正常。如不在此范围内,应按照说明书调试步骤进行修正。不难看出智能电梯的称重传感器是相当的重要,称重传感器的性能决定了电梯的性能以及安全。

五.总结

随社会的快速发展,自动化应用技术距离我们的生活也越来越近,这也离不开传感器技术发展,这些技术的发展就需要我们这一代进行进一步的高端化研究,这样我们的生活才会更加的方便,因此,做为一名当代大学生,我们更应该好好学习,为社会发展贡献我们的力量,为实现“中国梦”而不懈奋斗!

传感器与检测技术结课论文

第17篇:传感器复习

1.传感器定义及组成

传感器是将各种非电量按一定规律转换成便于处理和传输的另一种物理量的装置 一般由敏感元件;转换元件;测量电路组成

2.应变式传感器工作原理及组成

工作原理:应变效应

组成:敏感栅;基底;盖片;黏结剂;引线

3.应变式传感器温度误差原因及补偿

原因:其一应变片的电阻丝有一定温度系数;其二电阻丝材料与测试材料的线膨胀系数不同 补偿:单丝自补偿应变片;双丝组合式自补偿应变片;电路补偿法

4.电容式传感器分类 变面积(S)型;变介质介电常数(ε)型;变极板间距(d)型

5.电容式传感器误差分析

温度对结构尺寸的影响;电容电场的边缘效应;寄生与分布电容的影响

6.电感式传感器分类

原理:自感式与互感式;结构形式:气隙型和螺管型

7.零点残余电压原因及消除方法

原因:基波分量;高次谐波

消除方法:从设计和工艺上保证结构对称性;选用合适的测量线路;采用补偿线路

8.压电式传感器等效电路

P105

9.热电偶定义热电偶电势组成及三个基本定律

定义:将温度转换为电势的热电式传感器叫热电偶

电势组成:接触电势;温差电势

三个定律:中间导体定律;标准电机定律;连接导体定律与中间温度定律

10.热电偶冷端补偿方法

补偿导线法;冷端温度计算校正法;冰浴法;补偿电桥法

11.霍尔传感器温度补偿方法

恒流源供电;选用温度系数小的元件;采用恒温措施;

12.光电效应及分类

光电器件的物理基础是光电效应

分类:外光电效应;内光电效应

13.光线结构及光纤传感器分类

结构:玻璃纤维芯(纤芯);玻璃包皮(包层)

分类:功能型(全光纤型);非功能型(传光型);拾光型

第18篇:传感器原理

1.Electrochemical(toxic) 检测有毒气体

电化学式传感器,用于检测有毒气体。电化学式包括定电位电解式和伽伐尼电池式氧气传感器。这里主要指的是定电位电解式传感器。

定电位电解式传感器原理:

筒状塑料池体内,装有电极,电极间充满电解液,由多孔四氟乙烯做成的隔膜在顶部封装。电极间加电位且与前置放大器连接。气体与电解质内的工作电极发生氧化还原反应,电极平衡电位发生变化,变化的值与气体浓度成正比。

2.Catalytic combustion or Infrared 检测可燃气体

催化燃烧式传感器或红外式传感器。这两种传感器主要用于检测可燃气体。催化燃烧式传感器原理:

气体扩散到传感器的催化燃烧室。燃烧室中两只传感器元件上的催化剂使可燃性气体进行无焰燃烧,产生热量。温度使感应电阻阻值发生变化,打破电桥平衡,产生微小的电压差信号,此信号与可燃气体浓度是成正比的的,从而达到检测可燃气体浓度的目的。

红外式传感器原理:

红外式传感器,是通过一个红外发生器产生红外光, 穿过充有样气的气室,然后被各种气体的专用接收器接收。是利用不同元素对某个特定波长的吸收原理。

3.Diffusion fuel cell 检测氧气

扩散燃烧单元(燃料电池)。即通常所说的伽伐尼电池式氧气传感器。用于氧气的检测。

伽伐尼电池式氧气传感器原理:

塑料容器内一面装有对氧气透过性良好的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂,黄金,银等)阴电极,在容器另一面内侧或容器的空余部分形成阳极(用铅,镉等离子化倾向大的金属)。氧气在通过电解质时阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,产生电流。电流的大小与氧气的多少成正比。

半导体式气体传感器是依据金属氧化物半导体材料,在空气中,在遇到当空气的氧化还原状态发生变化时,半导体才料的电导率会发生相应的变化,比如:当空气中弥漫一定浓度的酒精蒸汽时,二氧化锡半导体材料的电导率会升高,电阻下降;而这种变化的幅度与气体的浓度直接相关,这就是半导体式气体传感器!我们家庭排油烟机下面的电子鼻就是使用的这种传感器。

电化学式气体传感器是依据气体的电化学氧化和还原的原理制备的,他的原理是与我们的电池几乎相同。比如,我们检测一氧化碳,CO在电解池的阳极被氧化成二氧化碳,而电解电流与CO的浓度有关。

电化学传感器准确而灵敏,但是,由于大量使用贵金属,另外制作工艺复杂,因此价格较高。

我国敏感元件与传感器行业现状与差距

我国电子信息业在上世纪八十年代第一次腾飞后,随着国民经济信息化进程的加快,之后又进入持续快速发展的新时期。这个时期电子信息产业的主要特征表现为:一是正在从单一的制造业转变为物质生产与知识生产,装备制造与系统集成,

硬件制造与软件制造,工业生产与信息服务相结合的现代信息产业;二是产业结构,产品结构,企业结构,运行机制,管理模式等方面发生了深刻变化;三是我国信息产业成为国民经济的支柱产业和先导产业,是新世纪的战略产业,为国民经济和社会信息化建设提供主要技术和物质支撑。

传感器技术及其产业的特点是:基础、应用两头依附;技术、投资两个密集;产品、产业两大分散。基础、应用两头依附,是指传感器技术的发展依附于敏感机理、敏感材料、工艺设备和计测技术这四块基石。敏感机理千差万别,敏感材料多种多样,工艺设备各不相同,计测技术大相径庭,没有上述四块基石的支撑,传感器技术难以为继。

应用依附是指传感器技术基本上属于应用技术,其市场开发多依赖于检测装置和自动控制系统的应用,才能真正体现出它的高附加效益并形成现实市场。也即发展传感器技术要以市场为导向,实行需求牵引。技术、投资两个密集技术密集是指传感器在研制和制造过程中技术的多样性、边缘性、综合性和技艺性。它是多种高技术的集合产物。由于技术密集也自然要求人才密集。投资密集是指研究开发和生产某一种传感器产品要求一定的投资强度,尤其是在工程化研究以及建立规模经济生产线时,更要求较大的投资。增加投资和正确的投资方向是提高传感器产业水平的主要条件之一,也是企事业决策者谋求最佳经济效益的重要手段。产品、产业两大分散,产品结构和产业结构的两大分散是指传感器产品门类品种繁多,生产、研究单位分布在除地方外有12个部委(电子、机械、科学院、航空航天、教委、冶金、船舶、铁道、轻工、化工、煤炭等),其应用渗透到各个产业部门,它的发展既是各产业发展的推动力。只有按照市场需求,不断调整产业结构和产品结构,才能实现传感器产业的全面、协调、持续发展。

在国家的支持下,“八五”以来,我国的传感器技术及其产业取得了长足进步。

在学术交流方面,1989年10月由敏感元器件与传感器分会发起主办的“STC〃89 首届全国敏感元件与传感器学术会议”已延续至今,固定每两年召开一次,每逢活动不但国内学者、企业家云集且有不少其它国家的人士参加。目前,其论值组织机构为:“全国敏感元件与传感器学术团体联合组织委员会”。

在原电子工业部的努力及敏感元器件与传感器分会的积极组织下,实施的“双加工程”即:加快力度加快发展,的方针指导下,建立了我国敏感元器件与传感器生产基地。这三大基地分别为:

“安徽基地”,主要是建立力、光敏规模经济。

“陕西基地”,1990年2月成立了“陕西省敏感技术产业集团公司”主要是建立电压敏、热敏、汽车电子规模经济为主要目标。

“黑龙江基地”主要建立气、湿敏规模经济为主要目标。

多年来,三大基地在发展过程中虽然兴衰不一,历史地看,它对我国敏感元件与传感器行业的建设起到了一定的推动作用。

“九五”期间传感器技术研究国家重点科技攻关项目取得了51个品种86个规格的新产品。初步建立了敏感元件与传感器产业。

产品已进入到亿万人民的家庭生活中,并已在国民经济各部门和国防建设中得到一定应用。

近年来,在研发主力军的建设方面,主要表现在:(1)建立了“传感技术国家重点实验室”、“微米/纳米国家重点实验室”、“国家传感技术工程中心”等研究开发基地。

全国已有1688家企事业从事传感器的研制、生产和应用,其中从事MEMS研制生产的已有50多家。目前全行业正在执行“十五”规划,MEMS等5项新型传感器已列入研究开发的重点;国家计委决定从2002年开始组织实施的新型电子元器件产业化专项中有5项新型敏感元件与传感器已经启动;一些省、市新建立的“传感器产业基地”、“MEMS科技股份有限公司”,呈现出良好的发展态势。我的博客

zhanggehao2003@163.com是我的信箱QQ158458067是我的QQ号徐静蕾新浪博客http://blog.sina.com.cn/m/xujinglei 要找的东东全在我上面的网址里的,如果找不到,请和我留言要不写信,谢谢

回答者:zhanggehao - 秀才 二级 4-5 23:45

第19篇:传感器总结

传感器总结

传感器,顾名思义就是传递自身感受的仪器,听起来好似很简单,那为什么我们需要单独开设这门课程呢?

传感器是新技术和信息社会的重要技术基础,是现代科技的开路先锋。日本把传感器技术列入十大技术之首,日本商业界人士称“支配了传感器技术就能够支配新时代”。世界技术发达的国家对传感器技术都十分的重视。传感器技术是一项当今世界令人瞩目的迅速发展起来的高新技术之一,也是当代科学技术发展的一个重要标志,它与通信技术、计算机技术构成信息产业的三大支柱。如果说计算机是人类大脑的扩展,那么传感器就是人类五官的延伸。从以上可以看看出传感器是一项非常重要的技术。而作为一名测控技术与仪器专业的学生,既然要测量,肯定就会用各种各样的传感器,以达到不同的测量要求,那么学好传感器这门课就显得异常重要。

与传感器的接触下,经常会思考一些有关传感器的问题,比如:在传感器的发展初期,当还没有出现“传感器”这个词语的时候,人们是怎么想到要发明这些东西的,它是怎么感受四周的变化的?通过什么感受到的?又是怎么传递这种感觉的?想着,想着,缺乏传感器专业知识的我就会陷入困境。迫使自己去查阅书籍文献,来解决这些问题。

在这一学期中,我们学到了很多种传感器,霍尔式传感器、压电式传感器、光电式传感器、热电式传感器和超声波传感器等等,而这些传感器有的不仅可以测出位移,还可以测量加速度等。一种传感器有多种用途,这就决定了我们要活学活用。初次见到这些名字的传感器的时候,实在很难想象它们是怎么测出我们所需要的量的,同时还能测出其他的量。

所以,传感器其实是一门生动的课,我们只有认真地听课,再加上积极地思考平时出现在生活中的传感器的应用,同时努力尝试着去做一些简易的传感器仪器,才能真正地不愧于一学期的学习。我觉得传感器是一门绝对离不开PPT的课程,如果光是老师在讲台上拿着书本一阵狂念,还不如我们自己去琢磨。当老师每次举出一个传感器的实际应用时,就颇为受用,难以理解的传感器一下子变得生动能够想象它的工作模式了,所以非常支持老师选用PPT教学,但唯一美中不足的是PPT跟课本不配套。非常喜欢老师的教学模式,不仅教会我们专业知识,还时常与我们谈论一些大道理,讲一些文学渊源,虽然我们每次都是让老师大失所望,老师也会毫不留情的说出对我们的评价,但是相信在老师的鞭策下,我们会成长的更快。

第20篇:传感器课程设计

传感器课程设计感想

设计题目:智能温控风扇传感器

这次传感器的课程设计题目我们小组选了温度控制风扇传感器,这个实验涉及了模电、电路的一些基础部分,同时也让我们了解了电路排版、焊接的一些基本技能。其实刚开始我们小组选的并不是这个温控风扇传感器,而是基于电阻式传感器而来的测重仪,后来去老师那里要材料老师说电阻式传感器设计的侧重仪所需要的单片机偏贵,叫我们最好换另外的。在一起商量以后我们决定换成了温控风扇传感器。

在我们做实物的时候我们也遇到了很多的麻烦和问题。在组装排版的时候由于洞洞板不是很大这就对我们的排版有了一定的要求,不然到时候焊接电路也会变得很繁琐。由于以前我们都没有接触过焊接刚开始的时候焊接的也不是很好,有时候还会不能连在一起的导线黏在一起,经过一定的练习之后慢慢掌握了要领焊接起来就很快乐。面对着看去很复杂的电路图我们在做的过程中也要做到很仔细的区观察并且在焊的时候要再去确认一遍电路的正确性。这样就减少了不必要的麻烦,省的到时候检查的时候错误过于多。

我在领了材料以后看了一下,以为没有温度传感器后来我才发现DS18B20是这么小,以至于我把他当成了三极管。这也是由于我没有对这个温度传感器的了解菜会产生这种情况的。当我们焊接了以后对这个喜欢干起进行调试,出现了数码管没有亮,后来经过寻找问题后发现一个地方没有焊接好。在经过纠正调试以后传感器成功运行。

经过这次的传感器课程设计我不仅增加了一些对电路基本操作技能的了解而且也让我对传感器有了新的认识。传感器处在我们身边的每个角落。我们用的大部分用电产品都需要大大小小不同的传感器来测量控制,大到飞机火车小到电子温度计都需要传感器。而在实现这些功能的产品中是复杂的电路即使一个小小的传感器也有非常复杂电路和强大的功能。传感器运用器件的功能做成我们所需要相应的东西然给我们的带来了更多的方便和快捷的方法。

《传感器论文范文大全.doc》
传感器论文范文大全
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

相关推荐

实施方案自查报告整改措施先进事迹材料应急预案工作计划调研报告调查报告工作汇报其他范文
下载全文