成型技术工作总结范文

2022-12-26 来源:专业技术个人总结收藏下载本文

推荐第1篇:褐煤成型技术分析

褐煤成型技术

1褐煤多联产技术

褐煤多联产是以褐煤为原料,集褐煤预处理,气化,化工合成,发电,供热,废弃物资源循环利用等单元工艺构成的褐煤综合利用系统,其整个核心工艺是褐煤预处理及煤的干燥,干馏,成型,气化,燃烧,其过程是通过大规模的褐煤预处理提质后,将提质煤放在燃烧炉或气化炉燃烧和气化,气化后粗合成气通过气体净化单元处理后再通过合成反应器,生成合成氨,甲醇,二甲醚,合成油等洁净燃料或其它高附加值化工产品,反应尾气直接通往燃气-蒸汽联合循环发电或开展热,电,冷联产。

褐煤多联产工艺具有产品结构灵活,生产成本低,能源转化效率高和环境友好等特点,可以最大限度地处理或利用煤炭中的污染物,体现了循环经济的理念。由于我国的能源结构是以煤炭为主,而褐煤又占有相当的比重,并在相当长的时间内难以改变这种格局。因此,我国的经济要想可持续发展,就必须在实现褐煤资源的高效,洁净利用,优化终端能源结构上下功夫。褐煤多联产就是解决这一问题的综合利用技术。

2褐煤干燥

2.1褐煤干燥工艺

褐煤干燥提质按干燥介质与褐煤接触的方式划分,可分为两类:直接干燥和间接干燥。直接干燥是褐煤直接与热介质接触,通过热介质蒸发褐煤水分而达到干燥褐煤的目的。直接干燥可分为普通蒸发干燥,热油干燥,热水干燥,蒸汽空气联合干燥等。间接干燥通常是褐煤不直接与热介质接触,通过换热器与热介质换热,吸收热量蒸发水分而达到干燥的目的。德国多特蒙德大学Strau等研究开发了热压脱水工艺(MTE),国内中国矿业大学通过\"985\"优势学科平台建设,已搭建了褐煤热压脱水实验系统,国内大唐华银及一些电厂等单位正在作相关研究。

2.1.1褐煤直接干燥工艺

褐煤直接干燥通常是将热介质直接与褐煤接触蒸发水分而达到干燥褐煤的目的。按照干燥床型,干燥温度,进料时间或产品是块煤还是粉煤等因素来进行划分,工艺略有区别。普通干燥方式有固定床,流化床,回转窑等。每一种都有其优缺点。它们大部分都在相对低温条件下的干燥,通常干燥介质为热烟气。由于褐煤的燃点较低,干燥过程中常因局部过热,使煤质变差,控制不好还会引起燃烧和爆炸。但由于这些工艺在常压低温下进行,所以成本较低。如果干燥后的产品立即使用的话,可采用这些工艺,由于没有改变煤的疏松结构,一旦重新处于潮湿的空气或水中,又会迅速吸收失去的水分。

2.1.2褐煤间接干燥工艺

褐煤间接干燥通常是热介质不直接与褐煤接触,通过换热器吸收热量蒸发水分而达到干燥褐煤的目的。管式干燥机就是采用这种间接干燥的原理,煤在管内流动,蒸汽通过管壁传热,褐煤吸热达到干燥的目的。这种工艺具有安全性,可靠性的特点,因而,特别适用于燃点低,易燃,易爆的年轻煤种。

采取合理的结构可以取得较好的干燥效果。管式干燥机就是一种较好的间接干燥工艺技术。

2.2褐煤成型工艺原理

褐煤热压成型工艺是根据褐煤毛细孔模型的原理,褐煤中有大量含水的毛细孔,毛细孔中含有一定量的内水,经采用干燥工艺后,大部分的内水被干燥,少部分水分作为黏结剂。根据褐煤的类型和成型原理,需保留一定的水分,成型时毛细孔被压溃,进而充填煤粒间的空隙,呈现出相互作用的分子间力,加强了煤粒间的接触而成型。成型后的褐煤毛细孔结构被破坏,故重新吸附水现象大为降低。无黏结剂高压热压成型与有黏结剂成型比较,有其独特的优点。产品能量密度较高,含水量少,强度高,不需要添加有机黏结剂,有一定的防水 褐煤烘干机

性,适合长途运输。

2.3国内外褐煤干燥研究应用情况

为了更高效地利用褐煤,国内的研究机构和企业都进行了大量的工作。目前,澳大利亚,美国,德国,希腊,波兰等国家都有丰富的褐煤资源,为了增加低阶煤在市场的竞争力,提高电厂效率,都进行了褐煤干燥技术的研究工作,其中褐煤的预干燥处理技术是这几年的研究重点。在欧洲,褐煤的干燥也是洁净煤技术项目中的一个重要组成部分。

美国针对褐煤,也在开展煤炭干燥和煤质改性的研究。印度尼西亚(简称\"印尼\")拥有丰富的褐煤资源,原煤灰分很低,但水分高达20~60,因此,印尼煤炭企业也在寻求经济高效的褐煤干燥技术,以增强印尼煤在国际市场的竞争力。

国外新近开发研究的用于褐煤的气流干燥,流化床干燥等技术,属于快速直接干燥,其效率高,蒸发强度大,自动化程度高,但其投资较高,目前尚处于试验阶段。如德国RWE公司研发的蒸汽流化床干燥褐煤的工艺,澳大利亚研发的闪蒸干燥管干燥褐煤技术等。

目前,褐煤加工利用在我国刚刚起步。褐煤提质应根据褐煤质量性能,产品市场定位,选择相应的加工技术。目前我国研究开发的若干种褐煤提质技术中,已进行工业化试生产的技术主要有:大连理工大学的褐煤固体热载体法快速热解技术,鞍山热能研究院的褐煤低温干馏改质技术,北京柯林斯达能源技术开发公司的褐煤低温干燥改性提质技术等。这几种技术所采取的干燥方法和加热温度不同,产品方案和产品性能也有差异,均已在国内褐煤产地建立了工业化试生产装置。国内还有常见的回转圆筒干燥机,属于直接干燥,技术成熟,操作稳定,但设备体积,质量大,蒸发强度低,干燥停留时间长,不适宜用于高挥发分的褐煤干燥。目前中国煤炭科学研究院对此做过一些工作,但由于回转圆筒干燥机出力较低,基本否定用于褐煤干燥工业化生产。由上述可见,要满足未来煤炭技术需要的干燥方法,必须达到以下目标:减少对环境的污染;适应未来褐煤深加工工艺过程的需要;降低干燥过程的能源消耗,提高深加工过程的效率;降低生产成本,提高对进口燃料的竞争能力。

3褐煤预处理后的综合利用工艺褐煤通过干燥,干馏,成型后的产品可采用先进的气流床(粉煤加压气化),碎煤移动床(固定床加压气化)等气化技术将其大规模加压气化,具有环保性能好,原料适应,效率高的特点。煤气化后得到CO H2 CH4粗合成气,是制合成氨,甲醇,甲烷气,油品和IGCC的原料气体.

3.1褐煤制合成氨工艺

褐煤通过干燥,干馏或成型后进入气化单元,得到的合成气中的CO可通过蒸气变换,在催化剂作用下反应得到H2 CO2,其中的CO2是生产尿素的原料。变换气再经过气体净化,如低温甲醇洗,甲烷化(或液氮洗),配氮,压缩后进行氨合成,最后得到产品尿素,内蒙古呼伦贝尔盟金新化工有限公司投资31.5亿元的年产50万吨合成氨,80万吨尿素的煤化工项目已经开工建设。该合成氨装置以宝日希勒煤田的褐煤为原料,采用英国BGL熔渣煤气化技术,将于2011年6月建成投产。

3.2褐煤制甲醇工艺

利用褐煤预处理后进行煤气化得到合成气再作为甲醇原料是一个非常好的原料路线,甲醇无论是作为过渡性混合燃料,还是成为燃料电池的重要原料,有很好的前景。关键决定选择煤气化技术和装置规模。煤气化后得到(CO H2)粗合成气中CO H2是制甲醇的原料气。粗合成气先经预变换后,再经低温甲醇洗,压缩,甲醇合成,甲醇精馏,最后得到甲醇。扎赉诺尔煤业有限公司建设年产60万吨褐煤制甲醇生产线项目已经立项。内蒙古鲁新能源开发有限公司依托当地丰富的褐煤,水资源,规划建设年产300万吨甲醇项目,一期建设年产120万吨甲醇及转化烯烃项目。

3.3褐煤制氢工艺

20世纪70年代初国际上出现的石油危机使人们对石油天然气的安全供应问题有了深刻

的认识,从而促进了煤气化技术的进步。

通过气化实现能量的有效转换,以减轻对石油资源的依赖。粗合成气经变换后CO可降至0.2左右。再通过酸性气体脱除后,能得到98以上的氢气。在煤制油的直接液化工艺中,氢气是重要的原料;氢还可用做燃料电池的燃料。

3.4褐煤间接液化制备油品工艺

褐煤间接液化技术是先将煤气化生产合成气,然后以合成气为原料通过费托合成生产出馏程不同的液态烃。煤间接液化包括煤气化单元,气体净化单元,F-T合成单元,分离单元,后加工提质单元等。与直接液化技术相比,间接液化技术对煤质要求不高。南非于20世纪50年代开始建设商业化工厂,目前已形成年产700万吨产品生产能力。国内间接液化技术开发也有20年的历史,已建成了低温浆态床合成油中试装置,并进行了长周期试验运行,获得了高质量柴油产品。

2009年我国煤制油项目先后试车成功,神华集团的直接液化和中科合成油公司的间接液化自主知识产权煤制油技术得到验证。2009年1月,神华集团鄂尔多斯百万吨级直接液化煤制油示范装置试车成功,并于三季度进行第二次试车,截至12月份,已经总计出产了10万吨左右汽油,柴油等油品,首列石脑油专列于10月18日载着2300吨石脑油出厂运往天津港外销。神华煤制油化工公司18万吨/年的铁剂浆态床间接液化装置也成功试运行,神华集团也已经正式拿到成品油批发执照。截至2009年年底,我国煤制油产能达到168万吨。应用中科合成油公司铁基浆态床间接液化技术的3套工业试验装置也陆续投产。伊泰16万吨/年煤制油项目于2009年3月试车成功,并于9月正式投产,截至4季度,该项目累计生产油品1.2万多吨。伊第8期汪寿建:褐煤干燥成型多联产在工程实践中的应用和发展?1383?

泰煤制油公司和内蒙古石油化学工业检验测试所制定了《F-T合成柴油》,《F-T合成石脑油》企业标准,这两项标准填补了我国煤制油品标准的空白。预计在2010年我国已经建成的煤制油示范项目将陆续迈向商业化运营阶段,直接液化煤制油和间接液化煤制油的经济性,产品方案和质量指标将经受市场的考验。

3.5褐煤用于燃气蒸汽联合循环发电工艺

燃气蒸汽联合循环发电(integratedgasificationcombinedcycle,IGCC),是把高效的联合循环总能系统和洁净的燃煤技术结合起来的先进发电系统。

它由两部分组成,即煤的气化与净化部分和燃气蒸汽联合循环发电部分。第一部分的主要设备有气化炉,空分装置,煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮机发电系统,余热锅炉,蒸汽轮机发电系统。IGCC洁净煤发电的主要特点如下所述。

(1)热效率高,目前已达43~46,计划2010年可达到50.

(2)环保性能好。脱硫率98~99,NOx排放等同于天然气,CO2排放也降低。

(3)燃料适应性强,对高硫煤有独特的适应性。

(4)可用于对燃油联合循环机组及老燃煤电厂改造,达到提高效率,改善环保的目的。褐煤作为原料用于燃气蒸汽联合循环发电技术工艺流程。

IGCC的发展主要经历3个阶段:原理概念性验证阶段,商业示范验证阶段,商业化阶段。目前,对第二代阶段技术进行完善与提高,向第三代技术过渡并实现商业化应用已成为发电技术的主要发展方向。目前,美国各大集团(如GE,Texaco,Destec,FosterWheeler等),有关高校以及专业机构[美国电力研究所(EPRI),美国能源部能源情报署(EIA),美国国家能源技术实验室(NETL),美国环境研究中心(NCER),美国气化技术协会,IGCC联合会,煤利用研究协会]一直在积极进行该技术的研究,使得美国在技术上处于世界领先地位。欧洲非常重视IGCC技术的研究开发,目前欧洲联盟委员会资助了3项IGCC示范项目。日本是目前世界上拥有PFBC-CC电厂的台数最多,单机容量最大的国家,但是IGCC

技术却在世界范围内的石化企业中获得了相当成功的应用,这就使日本的能源界开始关注IGCC技术的研发和应用。

随着国际上IGCC机组从示范到商业化的运行,国内也开始大力发展IGCC技术。华能天津IGCC绿色煤电工程示范项目已经于2009年5月批复,现正在建设过程中。目前国内已经报批和进行可行性研究的IGCC项目还有:华电杭州半山IGCC工程示范项目,中国烟台发电厂IGCC项目,中广核东莞电化太阳洲IGCC示范工程项目等。由于IGCC项目符合国家的节能减排政策,国家发改委已经开始重视并对IGCC项目采取很宽松的政策,以前对此没有审批,主要是出于对初期投资非常大的考虑。

4褐煤干燥成型技术的实际应用

4.1中国化学工程集团公司-德国泽玛克间接干燥型煤工艺

由中国化学工程集团公司-德国泽玛克联合开发的褐煤间接干燥型煤工艺具有安全,可靠性高的特点,特别适用于燃点低,易燃,易爆的年轻煤种。

由于结构合理,传热效率高,在褐煤应用过程中取得较好的干燥效果。管式干燥机为一回转窑系统,在鼓形体内有一个多管系统,鼓体稍微倾斜。原煤连续不断地从上方送入干燥机管内,由于鼓体是倾斜的,当鼓体旋转时,煤不停地流到出口,干燥所需的热能由多管系统内的低压蒸汽提供,低压蒸汽沿鼓体轴向进入,并迅速向管外表面扩散,与煤一起进入机体内的空气吸收了水分以后在除尘器内与干煤粉分离,一部分重新压缩进入干燥机,另一部分排入大气。

褐煤干燥成型工艺关键设备由高压成型机组成,无黏结剂高压成型设备目前国内还不能生产。国外无黏结剂高压热压成型与国内褐煤有黏结剂成型比较,有其独特的优点,不需要添加昂贵的有机黏结剂,产品适合长途运输。而有黏结剂成化型如果不作防水处理,会较快吸收空气中的水分,强度降低。采用间接干燥成型技术有下列特点。

(1)针对富含水的褐煤在干燥提质过程中具有含水量高,挥发分高,易着火发生爆炸的特点,采用具有安全措施的干燥工艺,控制安全的干燥温度范围,用低压过热蒸汽作为干燥热媒介质,使干燥输送过程中具有可控性和安全措施,防止褐煤由于温度过高,挥发分气体逸出及粉尘与空气中的氧气反应发生爆炸。

(2)采用褐煤无添加黏结剂热压成型工艺,其成型和产品输送过程安全,可靠,无污染排放,热压成型后的褐煤发热量增加。

(3)与煤一起进入干燥装置内的空气吸收了水分以后与水蒸气混合在除尘器内与煤粉分离除尘后排入大气。由于在低温下进行干燥,主要是以干燥煤粒为主,煤的组分基本没有发生变化,挥发分气体没有逸出,干燥成型对环境的影响较小,基本无废弃物排放。排放的气体符合环保的要求。

(4)干燥,热压成型设备大型化,结构合理,成熟可靠,易于制造,施工简单,操作容易,布置紧凑,具有较好的经济效益。

(5)褐煤热压成型对煤的毛细孔结构进行强制压溃和破坏,保证干燥成型效果。热压成型后的褐煤水分大量除掉,空隙大量减少,褐煤的机械强度明显增强,煤质密度增强,便于运输,为褐煤的综合利用提供了便利。

采用中国化学工程集团公司-德国泽玛克联合开发的间接干燥型煤工艺技术已有大型工艺生产装置的业绩,年产100万吨型煤工厂见图7所示,管式干燥机间接干燥辊压成型工艺流程见图9所示。

4.2神华集团-中国矿业大学低阶煤高温烟气直接干燥成型技术

由神华集团和中国矿业大学(北京)共同开发的低阶煤高温烟气成型技术,是一种高温烟气干燥的工艺,该方法适用于褐煤和其它低阶煤的干燥。使用燃煤高温烟气,通过直接接触法干燥褐煤等煤种。其特点是排烟量少,热效率高,干燥速度快。干燥后的煤中内水含量

明显降低,煤的发热量增加。褐煤高温烟气直接干燥成型提质的特点是干燥和成型相互依托,连续运行。\"热\"用于脱水,较少部分焦油脱出,为无黏结成型提供条件;\"压\"用于成型,破坏褐煤的孔隙结构,保证脱出水后在短时间内回吸。该核心技术是褐煤的成型,通过控制干燥特性,干燥工艺参数,既保持一定的干燥度,使部分焦油组分脱出作为粘接成分,又不能过热造成褐煤着火。辊压成型压力约需1t/cm2以上,设备技术和材质要求高。该工艺设计两条生产线,每条生产线的设计生产能力为50万吨/年,设计出力83.33t/h.每条生产线设1台41.2MW热烟气发生炉,一台气流干燥器,4台出力为7~25t/h的HPU140-100对辊成型机,产品为半枕状型煤。提质后褐煤发热量提高约25,根据褐煤煤质(主要是灰分)的不同,提质煤发热量可达到4500~5500kcal/kg(1kcal=4.183kg)。

5结语

综上所述,以煤为主的能源结构决定中国必须高效洁净利用煤炭资源,褐煤多联产系统显然是未来煤炭技术发展的一种趋势,发展褐煤多联产系统对我国能源工业的战略调整和国民经济的可持续发展将起到一定的作用。褐煤多联产的目的是要大幅度地提高褐煤利用的效率和经济性,从而减轻资源需求压力并减少污染,并同时大规模地制备液体燃料和高附加值化工产品,部分缓解油气进口压力。

因此,褐煤多联产应当是大容量而且能够大规模应用的,褐煤多联产的核心技术应能满足大型化装置的要求,只有如此,企业才能获得最好的经济效益和社会效益。

推荐第2篇:热成型技术(定稿)

王辉:热成型技术可以帮助汽车节能减排http://auto.QQ.com

2009年10月20日18:31

腾讯汽车

我要评论(0) 主持人:下面进行今天最后一个主题演讲。下面有请本特勒汽车工业亚太区车身技术总监王辉博士。他演讲的题目是汽车安全设计及车身轻量化——本特勒热成型技术的应用。

王辉:我叫王辉,我来自德国本特勒集团。

不管现在的汽车动力是混合型的动力,还是电池的电动力,汽车车身轻量化的问题是一个主要的问题,汽车越轻,同样的动力他跑得越快,在同样的动力下他跑得远。所以我们今天的题目主要是讲一下怎么样用现代的工业技术以及新材料把车身在满足一些技术条件,比如说碰撞条件、干路条件下能满足轻量化,在节能减排方面做一些贡献。节能减排是一个大趋势,本特勒作为全球最大的汽车零部件供应商之一,我们可以说本特勒也在行动以节能减排。

我今天题目主要有几个部分,在技术报告之前,我用几分钟给大家介绍一下本特勒。另外,我再介绍一下关于二氧化碳的减排,这个题目今天我们前面的报告人都已经介绍了,我再简单介绍一下。另外,在车身上面材料的使用,为什么使用这个材料,这个材料有什么好处。我以前在国内做报告的题目就是这样:对于不同的零件我们可以使用不同的材料,满足他的技术要求,根据这个设计来满足轻量化的要求。另外,我给大家介绍我们近一两年在市场上推广的三个技术。最后,我要介绍三个例子,通过这三个例子大家可以看出来,作为节能减排,我们车的轻量化怎么能够在车的设计过程中考虑到成本的要求、轻量化的要求、技术的要求。

首先,本特勒。本特勒是一个家族企业,它已经存在了130年的历史。他以前是一个铁匠出身的,在50年代的时候,他曾经生产过五千辆最小车。60年代,本特勒集团分成三个分支,有钢管、钢材、汽车技术、贸易。我们今天主要讲的是汽车贸易,在汽车贸易里面我们有三个产品部门,第一个是底盘部门,我是来自车身部门的。另外一套,我们还有发动机和排气管道部门,另外,我们还有工程技术公司。本特勒全球在汽车行业总共在二十多家,有52个工厂16个研发中心,去年在汽车行业的销售量是46亿欧元,全球18000名员工。它的主要产品提前已经提到了,主要是底盘,底盘部门有底盘零件和底盘模块。我们还有车身件,车身件在车身里面,主要是A铸、B铸、前面保险杠这些系统。这些系统在汽车轻量化里面可以做很多的文章,因为在车身里面,碰撞是一个主要的,现在国内汽车要打开国际的碰撞门,你必须考虑到你这个车的设计,怎么样才能设计出一个车在国外欧洲碰撞的时候能够达到它的五星、四星的要求。我们这里面主要的安全零部件就拆开了热成型技术。我们主要发动机的钢管和排气管道,我们公司还有一个钢管厂,它是高强度的钢管它的抗强度能够到1600兆发左右。

这是我们公司以后要创新发展的未来,现在主要有三个:去年我们在国内搞技术展览的时候,我们已经提到这三个模块:这三个模块一个是有效合理的利用资源。有效合理的利用资源主要是考虑加工,我们通过不同的创新、改革使我们的先进工艺技术应用到生产中去,使能源消耗降低。这样我们有效的使用资源。另外,我们考虑到安全性。因为汽车的安全性是一个主要的课题,我们生产出来的车必须要安全。另外,就是环境保护,我们主要是考虑到怎样使汽车轻量化以达到减排的效果。所以我们不但在汽车零部件里面使用热成型技术,还有碳纤维材料,我们也可以提供这些产品的设计和生产。

接下来简单介绍我们公司的情况,我们公司在中国的业务也开展得很好,目前中国有四家工厂,两家在上海,一家在长春,另外一家在福州,而且我们公司是第一家把热成型技术引入中国的公司。前面介绍了我们公司。

下面讲一下我们下一个课题,这个课题主要是二氧化碳的规则。这个规则主要是欧共体定的规则。02年65%的车二氧化碳的排放量必须不能超过130克,05年,55%的车必须达到这个要求,如果不能达到这个要求,有一个惩罚,就是惩罚我们汽车厂,如果汽车厂超过一克,罚款五欧元,如果超过四克,每一克要付费95欧元。从2019年以后,所有的车生产,如果超出了这个标准,每一克都要罚款95欧元。这对汽车轻量化起到了很大的作用。这里面我们做了一个市场调查,如果车身或者整车的总量减轻一公斤,它的油耗可以节省多少升每公里,但是二氧化碳的排放量减少0.06克。这个0.06克是一个很小的数字,我们可以忽略不计,但是如果你从北京开到上海,来回跑一趟,二氧化碳的排放量就是很大的数字。而且如果你超过一克,从2012年开始,如果减轻重量一公斤,我就可以节省成本5.7欧元。这5.7欧元人民币就是57块钱。我们通过这个可以看出来,汽车的轻量化是非常关键的。在满足节能减排的大趋势下,作为一个汽车工程技术人员,必须要考虑到汽车的轻量化。我们做过一个调查,车身重量占整个车的40%,如果我们把车身减轻,整个车的重量就能够减轻。现在一般的设计都是单一的车型,我可以用全钢板车身结构,豪华车或者是奥迪车,全部是铝合金材料。在将来我们要考虑的肯定是车身的多样化,或者是材料的多样化。你要用不同的材料到不同的零部件上面去。以满足他的技术要求。这些材料比如说我们这里面说的有超高强度钢,一般抗拉强度在800以上的我们叫它是超高强度钢。比如说热成型技术,它的抗拉程度可以到1500、1600。铝合金、碳纤维复合材料,镁合金,这些技术在我们公司里面都可以进行设计以及进行生产。而且我们有一些产品已经在用这些方面的技术。

这是在德国汽车学会,由大众汽车公司牵头进行的研究。它是超级轻量化的车。这个车身的设计是有180公斤。这个车型是一个高尔夫(图库 论坛)的车型,这个高尔夫车型现在是180公斤,跟高尔夫

3、高尔夫4对比,它的材料减轻30%多。铝合金占了53%,有96公斤左右。钢板、钢材66公斤,镁合金11公斤,还有一些塑料件,这里面可能还有碳纤维复合材料。大家如果看一看的话,这里面的技术用了很多,比如说灰色的是热成型零部件,这里面表示,前面中央通道及以及底盘,底部通道,都是用高强度钢。为了满足侧面碰撞,A如和门底下的踏板,都是用热成型技术。再看这个车,这个车在欧洲碰撞已经拿到五个星,如果我们对它进行分析,看看哪些零部件我们可以改。看看在大的零部件能不能减轻它的重量。通过我们对前后保热成型材料,对顶部、底部,我们整个可以做一下估算。在满足这个技术要求情况下,碰撞要求、钢度要求等等要求情况下,我们可以减轻重量66公斤,这个66公斤是什么概念?成本我们现在不要考虑。因为铝合金和镁合金的材料成本肯定是很高的。我们现在根据技术进一步的创新,我估计成本肯定会降下来。我们考虑到二氧化碳的排放。这个排放我们可以考虑它在生产中,比如说复合材料或者是铝合金,它在生产中产生的二氧化碳提高了。但是,如果在使用期间它就降低了。而且在回收方面,因为复合材料等等的回收产生的二氧化碳也提高了。所以我们把整个考虑一下,如果一个车的使用寿命是20万公里,我们可以计算一下,它的二氧化碳的排放量可以减排670公斤。这670公斤我们除20万公里,等于是我们每公里减排4克二氧化碳。你一公斤,或者是一克,如果没有达标,你必须罚款95欧元,4克相当于400欧元左右,通过我们的分析,我们认为有可能根据我们的技术,尤其是热成型技术,我们能满足节能减排的要求。 前面谈到了很多的热成型技术,热成型到底是什么样的技术?热成型其实是很简单的一个技术。大家可以看出来,这个工艺过程很简单,首先是开点、下料,进行炉子的加温,这个温度一般是在950度左右加温。加温以后,一次冲压成形,然后再进行冷却。这个技术和一般的冲压技术的区别多了一个模子。模具里面有一套冷却系统。它减轻重量,因为它强度提高了,所以重量可以减轻。而且可以减少它里面加强板的数量,比如说我们可以看出来,这里面的中央通道是大众车的一个通道,我们可以通过热成型技术可以用到中央通道里面去,加强板等一些零部件就可以省掉了。因为我们是一次成型,所以我们就需要一套模具。同时,它的成型的精度非常高。另外,它的碰撞的能力非常优秀。

这是我们一般用在汽车材料上面的图,我们也称它为香蕉图,因为它的形状像香蕉。一般我们国内在车身的材料是在这个范围之内,它的强度是200兆帕,它的强度是40%,因为它比较软,比较容易成型。它的原始材料没有加温之前强度已经很高了,延伸率15%。通过加热,它的材料里面,晶体发生变化,然后变到这个程度情况下,我们进行冲压成形,这个材料一加热950度以后,钢板肯定还是软的,在这个情况下加热成型。成型的同时进行冷却。冷却是轧果处理了,它的强度就提高了。热成型技术和我们老祖宗以前造剑的技术是一样的。王麻子菜刀很快,它的刀的成型也是经过炉子里面烧,进行锤打,到炉子里面冷却。这个工艺的好处是它的成型在25秒到30秒这么很短的时间内来完成。这个技术是很关键的。这个材料是1600兆帕,跟200兆帕相比,我们强了8倍。国内的这些厂家经常提这个问题,你这个材料技术好,哪个零部件我是第一优选,比如说要热成型技术。这里面是我们在市场调查,上面这些图形,所有这些零部件标志,在06年以前都可以采用热车型技术进行生产的。现在我们已经拓宽了,比如说这个中央通道,在06年如果这个曲线进行对比,本特勒每年可以生产八百万件,而且BERU是在汽车零部件里面首选的零部件。

热成型我们公司是全球领先的,我们不光停留在以前的热成型技术上面,我们这几年在热成型技术开发获得了很大的成功。比如说我们最里面一个技术,这个技术我们通过分析计算,我们发现这些零部件BERU的厚度,到底不部不要那么厚,中间厚一点,根据不同的厚度,我们可以在材料开展的过程中进行汞压,使得板的厚度根据我们的要求来调整轧汞的参数来满足他不同的厚度。冲压以后下料,下料以后进行热成型,最后冲压成形。这里面的好处,我哪个地方厚就可以进行热成型加工,一套模具就可以满足他的要求。这个技术我们已经成功的用到了宝马X5(图库 论坛)上面去。

另外一个,打补丁技术,在碰撞的时候,有机的部位会加强,加强需要加强板和加强金。我们在BERU的技术里面,两个料同时进行下,下完了以后点焊连接起来,一起送到炉子里面加温,一次成形,这个技术解决了:第一,省一套工序费用。第二,如果你单独进行加工,最后技术组装焊接的话,它的强度很高,焊接不在一起。这种技术它解决了撞碰带来的困难。这里面大家要问了,你在加温之前焊在一起了,再加热以后再成型,这两个点会不会脱落?我们可以解决这个问题。另外,局部进行加热,尤其在侧面碰撞,它里面的要求特别高,最高的要求你顶部材料强一点,底部弱一点,所以碰撞的时候,底部吸收能量多一点。我们这个技术现在已经成功的运用到了奥迪Q5(图库 论坛)的技术上面去了,奥迪Q5去年在欧洲获得车身展的最优秀奖。一般碰撞的时候顶部变形小一点,底部变形大一点。如果我们以热成型,不同材料局部加热,底部变形很小,顶部变形很大,可以满足碰撞的要求,使得底部能量吸收多一点,因为底部的空间比较大。在优化的过程中我们发现,这里面有一个轻量化的对比。如果用冷成型,它的重量是8.7公斤,如果我们用这个技术,4.5公斤。整车的重量减轻4.3公斤。我们不断的提高,还可以把重量减轻。

下面讲三个例子。我们经过分析、计算,完全可以做到把外面这个板热成型,如果我们采用热成型技术,连成的三件我们可以连件进行组成,重量可以减轻八公斤,性能可以提高,成本上面少了一个零件,总量减轻了,装配成本减少了。所以我们这个零件在葡萄牙进行量产。另外,我们这里面做了一个例子,这个车已经碰撞无形,但是由于车底很重,我们通过进行比较可以看出来,这里面有五层板连接起来的,大家看这个照片,这个照片是这个车子的切割照片,这个车子是帕萨车车子的切面,这里面就是用热成型技术,我们可以在保证它的性能的情况下,减轻车底的重量7%,这个7%的数字很小,但是这个车420公斤,7%的概念相当于是30公斤左右。最后一个例子,我们把20年以前的车进行分析,看这个车能不能满足现在的欧洲碰撞要求。大家可以看出来,如果20年前的车与我们在做碰撞,全面的碰和侧面的碰,整个车压缩得很大,我们对它进行分析,以前用的车身材料没有用高强度钢,用600兆帕的钢也是占8%左右。我们进行优化、分析,采用高强度钢,我们可以发现,最里面优化前和优化后,我们可以减少它的变形将近800毫米,800毫米可以把里面的驾驶员的生命进行保护,碰撞以后他没有进行压缩。车内碰撞可以减少500毫米。

这就是我今天要做的报告,谢谢大家!

推荐第3篇:电火花成型加工技术

2 电火花成型加工技术

2.1 电火花加工原理和特点

一、原理

电火花加工时,脉冲电源的一极接工具电极,另一极接工件电极,两极均浸入具有一定绝缘度的液体介质(常用煤油或矿物油或去离子水)中。工具电极由自动进给调节装置控制,以保证工具与工件在正常加工时维持一很小的放电间隙(0.01~0.05mm)。当脉冲电压加到两极之间,便将当时条件下极间最近点的液体介质击穿,形成放电通道。由于通道的截面积很小,放电时间极短,致使能量高度集中(10~107W/mm),放电区域产生的瞬时高温足以使材料熔化甚至蒸发,以致形成一个小凹坑。第一次脉冲放电结束之后,经过很短的间隔时间,第二个脉冲又在另一极间最近点击穿放电。如此周而复始高频率地循环下去,工具电极不断地向工件进给,它的形状最终就复制在工件上,形成所需要的加工表面。与此同时,总能量的一小部分也释放到工具电极上,从而造成工具损耗。

从上看出,进行电火花加工必须具备三个条件:必须采用脉冲电源;必须采用自动进给调节装置,以保持工具电极与工件电极间微小的放电间隙;火花放电必须在具有一定绝缘强度(10~107Ω ·m)的液体介质中进行。

二、电火花常用基本符号

1、放电间隙:放电间隙指加工时工具和工件之间产生火花放电的一层距离间隙。在加工过程中,则称为加工间隙S,它的大小一般在0.01-0.5mm之间,粗加工时间隙较大,精加工时则较小。加工间隙又可分为端面间隙SF 和侧面间隙SL

2、脉冲宽度ti(μs):脉冲宽度简称脉宽,它是加到工具和工件上放电间隙两端的电压脉冲的持续时间(见图)为了防止电弧烧伤,电火花加工只能用断断续续的脉冲电压波。粗加工可用较大的脉宽ti>100μs,精加工时只能用较少的脉宽ti

3、脉冲间隔to(μs):脉冲间隔简称脉间或间隔,也称脉冲停歇时间。它是两个电压脉冲之间的间隔时间。间隔时间过短,放电间隙来不及消电离和恢复绝缘,容易产生电弧放电,烧伤工具和工件;脉间选得过长,将降低加工生产率。加工面积、加工深度较大时,脉间也应稍大。

4、开路电压或峰值电压:开路电压是间隙开路时电极间的最高电压,等于电源的直流电压。峰值电压高时,放电间隙大,生产率高,但成型复制精度稍差。

5、火花维持电压:火花维持电压是每次火花击穿后,在放电间隙上火花放电时的维持电压,一般在25V左右,但它实际是一个高频振荡的电压。电弧的维持电压比火花的维持电压低5V左右,高频振荡频率很低,一般示波器上观察不到高频成分,观察到的是一水平亮线。过渡电弧的维持电压则介于火花和电弧之间。

6、加工电压或间隙平均电压U(V)

加工电压或间隙平均电压是指加工时电压表上指示的放电间隙两端的平均电压,它是多个开路电压、火花放电维持电压、短路和脉冲间隔等零电压的平均值。在正常加工时,加工电压在30-50V,它与占空比、预置进给量等有关。占空比大、欠进给、欠跟踪、间隙偏开路,则加工电压偏大;占空比小、过跟踪或预置进给量小(间隙偏短路),加工电压即偏小。

7、加工电流I(A)

加工电流是加工时电流表上指示的流过放电间隙的平均电流。精加工时小,粗加工时大;间隙偏开路时小,间隙合理或偏短路时则大。

8、短路电流Is(A)

短路电流是放电间隙短路时(或人为短路时)电流表上指示的平均电流(因为短路时还有停歇时间内无电流)。它比正常加工时的平均电流要大20-40%。

9、峰值电流Ie(A)

峰值电流是间隙火花放电时脉冲电流的最大值(瞬时),日本、英国、美国常用Ie表示,虽然峰值电流不易直接测量,但它是实际影响生产率、表面粗糙度等指标的重要参数。在设计制造脉冲电源时,每一功率放大管串联限流电阻后的峰值电流是预先选择计算好的。为了安全,每个50W的大功率晶体管选定的峰值电流约为2-3A,电源说明书中也有说明,可以按此选定粗、中、精加工时的峰值电流(实际上是选定用几个功率管进行加工)。

10、放电状态

放电状态指电火花加工时放电间隙内每一脉冲放电时的基本状态。一般分为五种放电状态和脉冲类型

一、开路(空载脉冲)

2 放电间隙没有击穿,间隙上有大于50V的电压,但间隙内没有电流流过,为空载状态(td=ti)。

二、火花放电(工作脉冲,或称有效脉冲)

间隙内绝缘性能良好,工作液介质击穿后能有效地抛出、蚀除金属。波形特点是:电压上有td,te和Ie波形上有高频振荡的小锯齿波形。

第三、短路(短路脉冲)

放电间隙直接短路相接,这是由于伺服进给系统瞬时进给过多或放电间隙中有电蚀产物搭接所致。间隙短路时电流较大,但间隙两端的电压很小,没有蚀除加工作用。

第四、电弧放电(稳定电弧放电)

由于排屑不良,放电点集中在某一局部而不分散,局部热量积累,温度升高,恶性循环,此时火花放电就成为电弧放电,由于放电点固定在某一点或某局部,因此称为稳定电弧,常使电极表面结炭、烧伤。波形特点是td和高频振荡的小锯齿波基本消失。

第五、过渡电弧放电(不稳定电弧放电,或称不稳定火花放电)

过渡电弧放电是正常火花放电与稳定电弧放电的过渡状态,是稳定电弧放电的前兆。波形特点是击穿延时td很小或接近于零,仅成为一尖刺,电压电流波上的高频分量变低成为稀疏和锯齿形。早期检测出过渡电弧放电,对防止电弧烧伤有很大意义。

以上各种放电状态在实际加工中是交替、概率性地出现的(与加工规准和进给量、冲油、间隙污染等有关),甚至在一次单脉冲放电过程中,也可能交替出现两种以上的放电状态。

11、加工速度Vw或VW(mm/min),vm或Vm(g/min)

加工速度是单位时间(min)内从工件上蚀除加工下来的金属体积(mm;),以质量(g)计算时用vm或Vm表示,也称加工生产率。大功率电源粗加工时vW>500mm/min,但电火花精加工时,通常vw

12、相对损耗或损耗比(损耗率)θ(%)

相对损耗或损耗比是工具电极损耗速度和工件加工速度之比值,并以此来综合合衡量工具电极的耐损耗程度和加工性能。

13、面积效应:面积效应指电火花加工时,随加工面积大小变化而加工速度、电极损耗比和加工稳定性等指标随之变化的现象。一般加工面积过大或过小时,工艺指标通常降

3

333

3低,这是由“电流密度”过小或过大引起的。

14、深度效应:随着加工深度增加而加工速度和稳定性降低的现象称深度效应。主要是电蚀产物积聚、排屑不良所引起的

三、电火花加工特点

1:电火花加工速度与表面质量 模具在电火花机加工一般会采用粗、中、精分档加工方式。粗加工采用大功率、低损耗的实现,而中、精加工电极相对损耗大,但一般情况下中、精加工余量较少,因此电极损耗也极小,可以通过加工尺寸控制进行补偿,或在不影响精度要求时予以忽略。

2:电火花碳渣与排渣 电火花机加工在产生碳渣和排除碳渣平衡的条件下才能顺利进行。实际中往往以牺牲加工速度去排除碳渣,例如在中、精加工时采用高电压,大休止脉波等等。另一个影响排除碳渣的原因是加工面形状复杂,使排屑路径不畅通。唯有积极开创良好排除的条件,对症的采取一些方法来积极处理。

3:电火花工件与电极相互损耗 电火花机放电脉波时间长,有利于降低电极损耗。电火花机粗加工一般采用长放电脉波和大电流放电,加工速度快电极损耗小。在精加工时,小电流放电必须减小放电脉波时间,这样不仅加大了电极损耗,也大幅度降低了加工速度。

2.2 电火花成型加工的基本规律

一、加工条件

1)、工具电极和工件电极之间必须加以60V—300V的脉冲电压,同时还需维持合理的距离——放电间隙。大于放电间隙,介质不能被击穿,无法形成火花放电;小于放电间隙,会导致积炭,甚至发生电弧放电,无法继续加工。

2)、两极间必须充满介质。电火花成形加工一般为火花液或煤油,线切割一般为去离子水或乳化液。

3)、输送到两极间脉冲能量应足够大。即放电通道要有很大的电流密度(一般为10—10A/cm)。 492 4 4)、放电必须是短时间的脉冲放电。一般为1μs — 1ms。这样才能使放电产生的热量来不及扩散,从而把能量作用局限在很小的范围内,保持火花放电的冷极特性。

5)、脉冲放电需要多次进行,并且多次脉冲放电在时间上和空间上是分散的,避免发生局部烧伤。

6)、脉冲放电后的电蚀产物能及时排放至放电间隙之外,使重复性放电顺利进行。

二、影响加工因素

1、极性效应

2、覆盖效应

3、二次放电

4、加工速度

5、火花放电通道

6、工具电极损耗

7、放电间隙

8、放电产物排除

2.3 电火花加工设备

数控电火花成型加工机床由于功能的差异,导致在布局和外观上有很大的不同,但其基本组成是一样的,都由脉冲电源、数控装置、工作液循环系统、伺服进给系统、基础部件等组成。

主轴头:主轴头是电火花成型加工机床的一个关键部件,由伺服进给机构、导向和防扭机构、辅助机构三部分组成,控制工件与工具电极之间的放电间隙。

一、对主轴头的要求

主轴头的好坏直接影响加工的工艺指标,因此主轴头应具备以下条件:

1、有一定的轴向和侧向刚度及精度;

2、有足够的进给和回升速度;

3、主轴运动的直线性和防扭转性能好;

4、灵敏度要高,无爬行现象;

5、不同的机床要具备合理的承载电极的能力。

二、主轴头运动控制方式

1、电液伺服进给

2、步进电机伺服进给

3、直(交)流伺服进给

6 进给装置:火花放电加工是一种无切削力不接触的加工手段,要保证加工继续,就必须始终保持一定的放电间隙S 。这个间隙必须在一定的范围内,间隙过大就不能击穿放电介质,过小则容易短路。因此,电极的进给速度 Vd 必须大于电腐蚀的速度 Vw ,如图 7-4 所示。同时,电极还要频繁的靠近和离开工件,以便于排渣,而这种运动是无法用手动来控制的,故必须由伺服系统来自动控制电极的的运动。

自动进给调节系统就是用来改变、调节进给速度,使进给速度接近并等于电腐蚀速度,维持一定的放电间隙,使放电加工稳定进行,获得比较好的加工效果。

工作液循环过滤装置:

如图 7-5 所示,电火花成型加工用的工作液循环过滤系统包括工作液泵、容器、过滤器及管道等,使工作液强迫循环,其中 a )、b ) 为冲油式 , c )、d ) 为抽油式。 冲油是把经过过滤的清洁工作液经液压泵加压,强迫冲入电极与工件之间的放电间隙里,将放电蚀除的电蚀产物随同工作液一起从放电间隙中排除,以达到稳定加工。在加工时,冲油的压力可根据不同工件和几何形状及加工的深度随时改变,一般压力选在 0~200KPa 之间。对不通孔加工,) 所示,从图中可看出采用冲油的方法循环效果比抽油更简单,特别在型腔加工中大都采用这种方式,可以改善加工的稳定性。

下图为工作液循环系统油路图,它既能冲油又能抽油。其工作过程是:储油箱的工作液首先经过粗过滤器

1、单向阀 2 吸入液压泵 3 ,这时高压油经过不同形式的精过滤器 7 输向机床工作液槽,溢流安全阀 5 控制系统的压力不超过 400KPa,快速进油控制阀 10 供快速进油用,待油注满油箱时,可及时调节冲油选择阀 13,由阀 9 来控制工作液循环方式及压力,当阀 13 在冲油位置时,补油冲油都不通,这时油杯中油的压力由阀 9 控制。当阀 13 在抽油位置时,补油和抽油两路都通,这时压力工作液穿过射流抽吸管 12,利用流体速度产生负压,达到实现抽油的目的。

工作液循环过滤装置的过滤对象主要是金属粉屑和高温分解出来的碳黑,其过滤方式和点

脉冲电源:

一、作用

电火花成型加工用脉冲电源的原理及作用与电火花线切割相同。

二、分类

1、按其作用原理和所用的主要元件、脉冲波形等可分为多种类型,见表 7-3 。

2、按功能可分为等电压脉宽 ( 等频率 )、等电流脉宽脉冲电源,以及模拟量、数字量、微机控制、适应控制、智能化等脉冲电源。

工作台与工作液箱:工作台主要用来支承和装夹工件。在实际加工中,通过转动纵向丝杠来改变电极和工件的相对位置。工作台上装有工作液箱,用来容纳工作液,使电极和工件浸泡在工作液中,起到冷却和排屑的作用。

2.4 电火花加工技术的发展

电火花加工技术在制造业领域占有重要地位,是实现难加工材料、复杂零件精密加工的有效手段。我们应借鉴其他加工技术发展的成功经验,扬长避短,充分利用现代科技发展的相关成果,在深入研究电火花放电机理的基础上,指导电火花加工工艺理论和控制理论的研究,改善机床结构和设计方法,实现智能控制技术与电火花加工技术的有机结合,同时高度重视操作安全和环境保护,全面推动电火花加工技术更快发展。

推荐第4篇:钣金技术加工成型

一、钣金加工定义: 钣金加工是针对金属薄板(通常在6mm以下)一种综合冷加工工艺,包括剪切,冲裁,折弯,焊接,铆接,模具成型及表面处理等。其显著的特征就是同一零件厚度一致。根据加工方式不同,通常分为两类: 1.非模具加工: 通过NCT ,镭射,折床,铆钉机等加工工具对钣金进行加工的工艺方式,一般用于样品制作,成本较高.2.模具加工: 通过固定的模具,对钣金进行加工,一般有下料模,成型模,主要用于批量生产,成本较低.二、钣金加工流程介绍:

三、常见加工方法介绍: NCT(数控机床)加工 数控机床加工原理: 数控机床是一种能够适应产品频繁变化的柔性自动化机床,加工过程所需的各种操作和步骤以及刀具与工件之间的相对位移量都用数字化的代号来表示,通过控制介质(如纸带或磁盘)将数字信息送入专用的或通用的计算器,计算器对输入的信息进行处理和运算,发出各种指令来控制机床的伺服系统或其它执行组件,使机床自动加工出所需要的工件或产品.数控机床常见用途: 下料,冲网孔,冲凸包,切边,打凸点,压筋,压线,抽孔 数控机床的加工精度: +/- 0.1mm NCT(数控冲床)加工的工艺处理及注意事项: 1.在距边缘的距离小于料厚时,冲方孔会导致边缘被翻起,方孔越大翻边越明显,此时常常考虑LASER二次切割.2.NCT冲压的孔与孔之间,孔与边缘之间的距离不应过小,其允许值如表; 材料 冲圆孔 冲方孔 硬钢 0.5t 0.4t 软钢,黄铜 0.35t 0.3t 铝 0.3t 0.28t NCT冲压的最小孔径如表: 材料 冲圆孔 冲方孔 硬钢 1.3T 1.0T 软钢,黄铜 1.0T 0.7T 铝 0.8T 0.6T 注:T表示料厚

3.抽孔:NCT抽孔离边缘最小距离为3T,两个抽孔之间的最小距离为6T,抽孔离折弯边(内)的最小安全距离为3T+R,如偏小则须压线处理.4.经现场测试,NCT冲半剪凸点的高度不超过0.6T,如大于0.6T则极易脱落.镭射加工 镭射加工原理: Laser是由Light Amplification by Stimulated Emiion of Radiation的前缀缩写而成.原意为光线受激发放大,一般译为激光(也称激光).激光切割是由电子放电作为供给能源,通过He、N

2、CO2等混合气体为激发媒介,利用反射镜组聚焦产生激光光束,从而对材料进行切割.在由程控的伺服电机驱动下,切割头按照预定路线运动,从而切割出各种形状的工件。镭射机常见用途: 下料,割外形,二次切割,割线,割异形孔 镭射机的加工精度:+/- 0.1mm LASER加工的工艺处理及注意事项: 1.在割五金件底孔时,必须加大0.05mm.因为在切割起点与终点时会留有微小的接点.例 : 底孔为Φ5.4应割成Φ5.45(注:五金件的底通常用NCT或模具加工,以保证加工精度.) 2.割工艺孔时宽度一般大于0.5mm, 越小毛刺越明显.3.在从平面到凸包的斜面作二次切割时,速度必须很慢,实际上与 切割等厚材料类似.4.LASER为热加工,割网孔及薄材受热影响, 容易使工件变形.5.所有工件的锐角如没有特别要求在LASER加工时,必须按R0.5mm倒圆角.折床加工 折床加工原理: 将上、下模分别固定于折床的上、下工作台,利用液压传输驱动工作台的相对运动,结合上、下模的形状,从而实现对板材的折弯成形.一般分为上动式和下动式.折弯加工顺序的基本原则:由内到外进行折弯.由小到大进行折弯.先折弯特殊形状,再折弯一般形状.前工序成型后对后继工序不产生影响或干涉.折床常见用途: 成型,抽凸包,压垫脚,压线,压印字,铆钉,铆静电导轨,压接地符,抽孔,铆合,压平,压三角补强等.

折床的加工精度: 一折: +/- 0.1mm 二折: +/- 0.2mm 二折以上: +/- 0.3mm 常见折刀形状: 常见V槽形状: 注意:选用什么样的V槽与材料的厚度和折弯的形状有关系 孔到折弯边的最小距离

板料厚度 0.6~0.8 0.9~1.0 1.1~1.2 1.3~1.4 1.5 1.6~2.0 2.2~2.4 最小距离 2.0 2.5 3.0 3.5 4.0 5.0 5.5 以上尺寸是孔到内折弯边的距离,如果超过这个距离则折弯会引起孔变形,在这种情况下,可以通过其他加工方式来解决变形问题,如先折弯,后用镭射割孔,或者压线割线处理,或者直接开模具生产,担这样会增加加工成本,在条件允许的情况下,设计的时候尽量满足这些最小距离 钳加工

钳加工的常见种类: 1.铆钉机 用途: 铆螺母 铆导向销 铆螺柱

铆防静电手腕座 铆螺钉 所用模具: 铆合模

钳加工的常见种类: 2.攻牙机, 用途: 攻丝(攻牙) 所用模具: 丝锥

钳加工的常见种类: 3.抽孔机, 用途: 翻边抽孔 所用模具: 上模 ,冲子, 凹模 钳加工的常见种类: 4.拉丝机, 用途: 表面拉丝 所用模具: 砂带(不同规格) 钳加工的常见种类: 4.整平机, 钳加工的常见种类: 5.钻孔机 用途: 钻孔 所用模具: 钻头 模具加工 模具加工的特点: 1.快捷 2.精度高

3.适用于大批量生产 4.成本低 5.尺寸管控好 模具的分类: 1.落料模 2.成型模 3.整平模 4.压铆模 5.连续模

一般模具示意图,一般零件都由好几套模具连续生产而成型.表面处理 1.电镀: 通过化学反应,在材料表面附上一层其他金属,用来增加金属的防腐蚀性能,且能达到一定的美化外观作用,是常用的一种表面处理方式,如:电镀锌,电镀镍等.2.烤漆: 通过喷涂,高温烘烤等方式,在材料表面喷上一层各种颜色的涂料,用来美化外观,且能增加材料的防腐蚀性能.是常用的表面处理方式,一般有液体烤漆和粉体烤漆两种,其中粉体烤漆最常见.如烤华为蓝,华为黑等,烤漆表面是不导电的.有EMC要求的区域不允许烤漆.3.丝印: 在材料表面丝印上各种标识的工艺,一般有平板丝印和移印两种方式,主要原理与照相机菲林成像原理一样,也是一个曝光的过程.平板丝印主要用于一般平面上,但如果遇上有较深的凹坑的地方,就需要用到移印.4.表面拉丝

将材料放在拉丝机的上下绲轮之间,绲轮上附着有砂带,通过电机带动,让材料通过上下砂带,在材料表面拉出一道道痕迹,根据砂带的不同,痕迹粗细也不相同,主要作用是美化外观.一般都是铝材才考虑用拉丝的表面处理方式.5.喷砂: 通过喷砂机的风力将砂粒打到工件表面上,在工件表面形成一层密布的凹坑,主要作用是去除工件表面的脏污,增加工件表面的附着力,为后续表面处理方式做准备,在我们公司不常用.6.氧化: 将工件表面的金属氧化,在工件表面形成一层致密的保护膜,增加工件的防腐蚀性.一般有化学氧化和阳极氧化两种方式,是一种常用的表面处理方式,如散热器表面的阳极氧化发黑.钣金连接方式 常见钣金连接方式: 1.铆钉铆合: 这种铆钉常称为拉钉,将两块板材通过拉钉铆合在一起称之为拉铆,.常见铆合形状如图: 2.点焊: 工件组合后通过电极施加压力利用电流接头的接触面及附近区域产生电阻热进行焊接,点焊的总厚度不得超过8mm.3.抽孔铆合: 其中的一零件为抽孔,另一零件为沉孔,通过铆合模使之成为不可拆卸的连接体.优越性:抽孔与其相配合的沉孔的本身具有定位功能.铆合强度高,通过模具铆合效率也比较高.4.TOX铆合: 定义:通过简单的凸模将被连接件压进凹模.在进一步的压力作用下,使凹模内的材料向外”流动”.结果产生一个既无棱角,又无毛刺的圆连接点,而且不会影响其抗腐蚀性,即使对表面 有镀层或喷漆层的板件也同样能保留原有的防锈防腐特性,因为镀层和漆层也是随之一起变形流动.材料被挤向两边,挤进靠凹模侧的板件中, 从而形成TOX连接圆点.如下页图所示: 小结:

钣金加工的好坏,不仅仅是与设备有关系,也与操作人员的经验,工艺顺序的制作有很大的关系.钣金加工的概念与机加工的概念有很大的差别,机加工主要是指: “钻铣刨磨镗”,一般来说,机加工的精度比钣金加工的精度要高很多,所以不能用机加工的标准来要求钣金加工,目前业界的钣金加工的精度的经验值是+/-0.2mm.对特别的加工精度要求,可以用比较特殊的方式来加工,比如模具来加工.钣金的加工精度跟我们的设计紧密相关,如果在设计的时候不考虑加工精度的问题,产品回来后难免会发生干涉,难装配等缺陷。大卫逊工业设计公司一致贯彻从产品设计到产品生产最终实现,与总部的紧密合作,致力于产品的不断创新,为海内外各类制造商提供无数新产品方案。 常见加工设备的加工范围

推荐第5篇:快速成型技术复习重点

1.快速成型:简称RP,即将计算机辅助设计CAD\计算机辅助制造CAM\计算机数字控制CNC、激光、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的工件三维设计模型,对其进行分层切片,得到各层截面的二维轮廓信息,快速成型机的成形头按照这些轮廓信息在控制系统的控制下,选择性地固化或切割一层层的成形材料,形成各个截面轮廓,并逐步顺序叠加成三维工件。

快速成形技术全过程步骤:a.前处理b.分层叠加成型c.后处理 快速成形制造流程:CAD模型→面型化处理→分层→层信息处理→层准备→层制造→层粘接→实体模型 2. 什么是快速模具制造技术?该技术有何特点? 快速模具制造就是以快速成形技术制造的快速成型零件为母模,采用直接或间接的方法实现硅胶模、金属模、陶瓷模等模具的快速制造从而形成新产品的小批量制造,降低新产品的开发成本。特点:制模周期短、工艺简单、易于推广,制模成本低,精度和寿命都能满足特定的功能需要,综合经济效益好,特别适用于新产品开发试制、工艺验证和功能验证以及多品种小批量生产

LOM涂布工艺

采用薄片型材料,如纸 塑料薄膜 金属箔等,通过计算机控制激光束,按模型每一层的内外轮廓线切割薄片材料,得到该层的平面轮廓形状,然后逐层堆积成零件原型。

SLS技术(选择性激光烧结成型技术) 利用粉末材料如金属粉末 非金属粉末,采用激光照射的烧结原理,在计算机控制下进行层层堆积,最终加工制作成所需的模型或产品。 4. 快速成形与传统制造方法的区别?

传统方法根据零件成形过程分为两大类:一类是以成型过程中材料减少为特征,通过各种方法将零件毛胚上多余材料去除,即材料去除法,二类是材料的质量在成型过程中基本保持不变,成型过程主要是材料的转移和毛胚形状的改变即材料转移法,但此类方法生产周期长速度慢。快速成型技术可以以最快的速度、最低的成本和最好的品质将新产品迅速投放市场。

硅胶模及制作方法 硅胶模具是制作工艺品的专用模具胶。

制作工艺 原型表面处理 制作型框和固定型框 硅橡胶计量,混合并真空脱泡 硅橡胶浇注及固化 拆除型框,刀剖并取出原型 7 .构造三维模型的主要方法:a应用计算机三维设计软件,根据产品的要求设计三维模型b应用计算机三维设计软件,将已有产品的二维三视图转换为三维模型c防制产品时,应用反求设备和反求软件,得到产品的三维模型d利用网络将用户设计好的三维模型直接传输到快速成形工作站

9 光固化快速成形(SLA)有那几种形式的支撑?

a.角板支撑b.投射特征边支撑c.单臂板支撑d.臂板结构支撑e.柱形支撑

6.目前比较成熟的快速成型技术有哪几种?它们的成型原理上分别是什么?

液态光固化聚合物选择性固化成形简称SLA,粉末材料选择性烧结成形简称SLS,薄型材料选择性切割成形简称LOM,丝状材料选择性熔覆成形简称FDM

⑦SLA原理:1利用计算机控制下的紫外激光,按预定零件各分层截面的轮廓为轨迹逐点扫描,使被扫描区的光敏树脂薄层产生光聚合反应,从而形成零件的一个薄层截面;2当一层固化完毕,移动升降台,在原先固化的树脂表面上再敷上一层新的液态树脂,刮刀刮去多余的树脂;3激光束对新一层树脂进行扫描固化,使新固化的一层牢固地粘合在前一层上;4重复

2、3步,至整个零件原型制造完毕。『或SLA是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长(λ=325nm)和功率(P=30mW)的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也从液态转变成固态』

⑦SLS原理: 1在先开始加工之前,先将充有氮气的工作室升温,温度保持在粉末的熔点之下;2成型时,送料筒上升,铺粉滚筒移动,先在工作台上铺一层粉末材料;3激光束在计算机控制下,按照截面轮廓对实心部分所在的粉末进行烧结,使粉末融化并相互黏结,继而形成一层固体轮廓,未经烧结的粉末仍留在原处,作为下一层粉末的支撑;4第一层烧结完成后,工作台下降一截面层的高度,再铺上一层粉末,进行下一层烧结,如此循环,直至完成整个三维模型 FDM原理:加热喷头正在计算机的控制下,可根据界面轮廓的信息作X—Y平面运动和高度Z方向的运动丝状热塑性材料由供丝机构送至喷头,并在喷头中加热至熔融态,然后被选择性涂覆在工作台上,快速冷却后形成界面轮廓。一层截面完成后,喷头上升一截面层的高度在进行下一层的涂覆,如此循环,最终形成三维产品。

LOM:LOM快速成形系统由计算机原材料存储及送进机构、热粘压机构、激光切割系统、可升降工作台、数控系统、模型取出装置和机架等组成。计算机用于接受和存储工件的三维模型沿模型的成型方向截取一系列的截面轮廓信息发出控制指令原材料存储及送进机构将存于其中的原材料。热黏压机构将一层层成形材料粘合在一起。可升降工作台支撑正在成型的工件并在每层成形完毕之后,降低一个材料厚度以便送进、粘合和切割新的一层成形材料。数控系统执行计算机发出的指令,使材料逐步送至工作台的上方,然后粘合、切割,最终形成三维工件。b 原型制件过程

模型剖分 基底制作原型制作 余料,废料去除 后继处理

8.哪些成形方法需要支撑材料?为什么?

SLA、FDM需要制作支撑,LOM、SLS不需要制作支撑。原因:在SLA成形过程中为了确保制件的每一部分可靠固定,同时减少制件的翘曲变形,仅靠调整制件参数远不能达到目的,必须设计并在加工中制作一些柱状或筋状的支撑结构;LOM:工件外框与截面轮廓间的多余材料在加工中起到支撑作用,故不需支撑材料;SLS:未烧结的松散粉末可以作为自然支撑,故不需要支撑材料。

10.常用的快速成形技术所用的成形材料分别是什么?分别有什么要求?

SLA:材料为光固化树脂。要求:a.成形材料易于固化,且成形后具有一定的粘接强度b.成形材料的粘度不能太高,以保证加工层平整并减少液体流平时间c.成形材料本身的热影响区小,收缩应力小d.成形材料对光有一定的透过深度,以获得具有一定固化深度的曾片。

SLS:材料为所有受热后能相互粘结的粉末材料或表面覆有热塑(固)性黏结剂的粉末。要求:a.具有良好的烧结成形性能,即无需特殊工艺即可快速精确地成形原理b.对直接用作功能零件或模具的原型,其力学性能和物理性能要满足使用要求c.当原型间接使用时,要有利于快速、方便的后续处理和加工工艺。

LOM:薄层材料多为纸材,黏结剂一般多为热熔胶。对纸材要求:a.抗湿性b.良好的浸润性c.收缩率小d.一定的抗拉强度e.剥离性能好f.易打磨g.稳定性好。对热熔胶的要求:a.良好的热熔冷固性b.在反复熔化-固化条件下,具有较好的物理化学稳定性c.熔融状态下与纸材具有良好的涂挂性与涂匀性d.与纸具有足够的粘结强度e.良好的废料分离性能 FDM:材料为丝状热塑性材料。材料要求:a.黏度低b.熔融温度低c.黏结性要好d.收缩率对温度不能太敏感 11.这四种快速成形技术的优缺点分别是什么?

SLA优点:技术成熟应用广泛,成形速度快精度高,能量低。缺点:工艺复杂,需要支撑结构,材料种类有限,激光器寿命短原材料价格高。

SLS优点:不需要支撑结构,材料利用率高,选用的材料的力学性能比较好,材料价格便宜,无气味。缺点:能量高,表面粗糙,成形原型疏松多孔,对某些材料需要单独处理。 LOM优点:对实心部分大的物体成形速度快,支撑结构自动的包含在层面制造中,低的内应力和扭曲,同一物体中可包含多种材料和颜色。缺点:能量高,对内部空腔中的支撑物需要清理,材料利用率低,废料剥离困难,可能发生翘曲 FDM优点:成形速度快,材料利用率高,能量低,物体中可包含多种材料和颜色。缺点:表面光洁度低,粗糙。选用材料仅限于低熔点的材料。

12.主要快速成形系统选用原则:A:成形件的用途(a检查并核实形状、尺寸用的样品b性能考核用的样品c模具d小批量和特殊复杂零件的直接生产e新材料的研究)B:成形件的形状C:成形件的尺寸大小D成本(a设备购置成本b设备运行成本c人工成本)E技术服务(a保修期b软件的升级换代c技术研发力量)F用户环境

13.快速成形的全处理主要包括:CAD三维模型的构建、CAD三维模型STL格式化以及三维模型的切片处理等

14.在快速成型的前处理阶段为什么要把三维模型转化为STL文件格式?STL格式文件的规则和常见错误有哪些? 由于产品上有一些不规则的自由曲面,为方便的获得曲面每部分的坐标信息,加工前必须对其进行近似处理,此近似处理的三维模型文件即为STL格式文件

规则:a共顶点规则b取向规则c取值规则d合法实体规则 常见错误:a出现违反共顶点规则的三角形b出现违反取向规则的三角形c出现错误的裂缝或孔洞d三角形过多或过少e微小特征遗漏或出错

分析SLS SLA FOM LOM 质量及精度的影响因素及解决措施

从快速成型三个过程讨论

首先是前处理,四大成型工艺前处理工作基本相似,模型建立和切片。影响精度主要是切片,厚度越厚,叠加后工件侧面的台阶缺陷越明显,厚度越小,精度越高

SLA 1 树脂收缩及原因

树脂会发生收缩 导致零件成型过程中产生变形:翘曲

收缩原因;固化收缩和温度变化的热胀冷缩

2 机器误差

设备自身精度所带来的误差

3 加工参数设置误差

激光功率 扫描速度 扫描间距设置误差 FDM 1 设备精度误差 由于设备自身有一定的加工范围以及其加工精度,对最后加工工件有一定的误差 2 成型过程的误差a 不一致约束 由于相邻两层的轮廓有所不同 成型轨迹也不同 每层都要受到相邻层的约束 导致内应力 从而产生翘曲 b 成型功率控制不当 功率过大 会导致刮破前一层 同时会烧纸 机器寿命降低 过小 粘结不好c工艺参数不稳定

会导致层与层制件或同层不同位置成型状况的差异 从而导致翘曲 或度不均

SLS 主要是激光的参数 1 激光功率密度过大 扫描速度过小 则局部温度过高 导致粉末气化 烧结表面凹凸不平反之 则粉末烧结不充分甚至不能烧结 建立的制件强度低或者不能成行 2 激光束扫描间距与激光束半径配合会影响激光烧结的质量

LOM 过程中误差造成的缺陷 1 喷头起停误差 2 路间缺陷 解决方法 控制相邻路间的粘结温度使得接触牢固 控制材料的横向流动填补空洞

后处理影响精度主要有 人为修整带来的缺陷 有支持结构的成型工艺在除去支付结构时对工件表面的破坏等

推荐第6篇:【技术】浅谈整体成型工艺

【技术】浅谈整体成型工艺

背景

复合材料由于具有高比强度、高比刚度、性能可设计、抗疲劳性和耐腐蚀性好等优点,因此越来越广泛地应用于各类航空飞行器,大大地促进了飞行器的轻量化、高性能化、结构功能一体化。复合材料的应用部位已由非承力部件及次承力部件发展到主承力部件,并向大型化、整体化方向发展,先进复合材料的用量已成为航空器先进性的重要标志。复合材料整体成型是指采用复合材料的共固化(Co-curing)、共胶接(Co-bonding)、二次胶接(Secondary bonding)或液体成型等技术和手段,大量减少零件和紧固件数目,从而实现复合材料结构从设计到制造一体化成型的相关技术。在复合材料结构的设计和制造过程中,将几十甚至上百个零件减少到一个或几个零件,减少分段、减少对接、节省装配时间,可大幅度地减轻结构质量,并降低结构成本,而且充分利用了固化前复合材料灵活性的特点。国内外航空领域广泛地采用整体成型复合材料主构件,如诺·格公司的B2轰炸机、波音(Boeing)公司的787飞机和洛·马公司的F35战斗机均在机身和机翼部件中大量运用整体成型复合材料,整体成型结构已经成为挖掘复合材料结构效率,实现复合材料功能结构一体化以及降低复合材料制造成本的大方向。一某轻型公务机整体化复合材料中机身 01 成型材料02 成型方法上半模、下半模分别铺贴完成后合模,并进行接缝补强,最后固化成型。综合考虑工装的重量及与复合材料热膨胀系数的匹配性,选择复合材料工装,为了减轻增压舱上半模重量,上半模型面只采用复合材料型板进行加强,与金属结构支架的连接是可卸的,以利于翻转组合及吊装,图2 为工装示意图。目前,夹层结构的成型方法可以根据面板与蜂窝夹层结构的成型步骤分为共胶接法、二次胶接法和共固化法,对特殊要求的结构还可以采取分步固化。通过对机身结构铺层设计分析,对上、下半模合模位置进行了铺层补强设计,这就排除了采用上、下半模分别成型,然后二次胶接方法的可能。另外,由于整体性要求,若采用分步固化技术,机身外蒙皮固化粘结后形成内部机身舱腔体,局部位置内蒙皮的铺叠操作难度太大,几乎无法实现,所以针对中机身整体结构,采用共固化技术。同时根据结构特点、材料特性及质量要求等对主要工艺展开研究如下:(1)预浸料铺层及剪口优化技术;(2)蜂窝芯加工及定位技术;(3)蜂窝夹层结构的共固化工艺参数确定。二工艺路线及主要工艺措施

01 工艺流程中机身整体成型工艺采用共固化技术,即分别在上、下半模铺叠外蒙皮;然后铺放胶膜,定位蜂窝芯及预埋件;最后铺叠内蒙皮,合模,固化。主要工艺流程如图3 所示。02 主要工艺措施(1)铺层展开及优化。 采用CATIA 软件CPD 模块对中机身铺层进行可制造性分析,发现整层设计的预浸料层在结构突变的位置无法展开,并且纤维角度变化非常大,远远偏离了设计给出的铺层角度,如图4 所示。这是因为中机身型面复杂,而对于复杂曲面上的铺层,进行二维展开时,既要保证铺层能够展开,还要保证展开的铺层与3D 模型上边界一致,往往存在较大的困难。只有当制造可行性分析表明纤维变形在可接受范围内才可以进行铺层展开。所以在对复合材料分层数模进行工艺分析时,对不同位置作为起铺点的纤维角度变化进行分析,找出变形面积最小的铺叠起始位置,再通过铺层拼接及开剪口技术找到最优且满足设计铺层角度公差的工艺设计方案,图5 为经过优化后的铺层展开分析图。(2)蜂窝芯预处理。整个增压舱除了防火墙和翼盒外均使用19.05mm 过拉伸NOMEX蜂窝芯,其主要特点是蜂窝纵向柔性较大,易变形,贴模性好,适合成型曲度较大的零件。此种蜂窝芯的理论外形尺寸为2.44m×0.99m,而增压舱上下两部分的蜂窝芯展开尺寸约4m×2.5m,其尺寸远远超出蜂窝芯的外形尺寸,且蜂窝芯外形复杂,如图6 所示。制造过程中蜂窝芯需要拼接,常规蜂窝芯拼接是将蜂窝按位置要求分块后进行型面铣切,然后拼接。但过拉伸蜂窝芯收缩性较大,采取先铣切后拼接的方式,由于收缩会造成实际拼接时比理论外形小15~20mm,所以研制过程采用拼接胶先将蜂窝芯拼接,同时进行稳定化处理,如图7 所示,然后进行外形铣切,可以把误差控制在±3mm 范围以内,符合设计要求。(3)蜂窝芯及预埋件定位。

为了准确定位蜂窝芯和预埋件,在工装制造过程中就通过数控加工和定位预埋衬套和螺栓,用于定位蜂窝芯定位样板和预埋件。预埋件主要是翼盒、防火墙、舷窗等已固化零件,预埋件与蜂窝芯之间采用填充胶填充,以起到填充、补强和粘接的作用。 (4)制袋。

将铺叠完的上、下半模合模,铺叠补强层后进行制袋,由于中机身尺寸大,机身内部闭角多,排袋困难,容易架桥,局部地区由于导气不畅通,造成假真空。通过模拟和试验的方法,确定整体真空袋尺寸,通过制作“子母袋”的方法,将上、下半模整体包覆。另外,采用3/4”的抽气嘴分布于机身内部各处闭角附近,并确保各抽气嘴之间透气层的连续性,避免假真空。图8 为合模后制袋。(5)固化。 复合材料结构在升温固化过程中经历复杂的热- 化学变化,温度、压力及保温时间等工艺参数的确定对结构成型过程有着重要的影响,最终关联着质量问题。如果工艺参数选择不当,常常使复合材料形成不同类型的缺陷,如分层、孔隙、脱粘等。在中机身的成型过程中,按简单的材料工艺进行固化,即室温升至130℃,保温2h,降温至60℃,结果发现固化保温过程中局部位置温度突变,存在集中放热的现象,如图9 所示,检测发现部分区域存在大面积气孔和疏松现象。分析原因,主要是由于中机身模具是一个一端封闭的结构,且机身模具各部位厚度差别较大,整体温度场均匀性不好,造成成型过程温度场难以保证,直接影响固化质量。为解决这一问题,需进行工艺参数的调整,以材料规范中材料本身的固化参数为基础,通过对典型结构零件固化炉成型工艺研究,采用双台阶固化曲线(见图10),结果表明,在树脂凝胶点87℃保温1.5h(第一台阶),在树脂进行了部分固化反应,释放了一定的固化反应热,这样,能够减小在最终固化温度130℃固化过程中的固化反应热释放,减小了温度场差异,有利于排除挥发分,保证固化度一致性。(6)外形铣切及检测。

中机身的风挡、舷窗、舱门等处采用外形铣切型架及靠模的方式进行铣切,如图11 所示。经无损及型面检测,均能满足设计要求。三结束语

通过对某型公务机中机身整体成型技术的研究,证明了该结构采用蜂窝预处理及定位,上、下模组合成型及共固化工艺的制造方案是可行的。本研究也是对我国通用飞机复合材料主结构整体成型工艺的一次有益探索,提升了我国通用飞机复合材料技术设计和制造水平,对推动我国通用飞机产业的发展具有重要的作用和意义。

推荐第7篇:上海大学材料成型技术

绪论

“材料成形技术基础”是机械工程专业和相关工程专业学生的一门重要的技术基础课程,主要研究机器零件的常用材料和材料成形方法,即从选择材料到毛坯或零件成形的综合性课程。通过本课程的学习,可获得常用工程材料及材料成形工艺的知识,培养学生工艺分析的能力,了解现代材料成形的先进工艺、技术和发展趋势,为后续课程学习和工作实践奠定必要的基础。

材料是科学与工业技术发展的基础。先进的材料已成为当代文明的主要支柱之一。人类文明的发展史,是一部学习利用材料、制造材料、创新材料的历史。如果查看一下诺贝尔物理、化学奖的获得者,不难发现20世纪的物理学家和化学家们曾对材料科学做过一系列的贡献。Laue(1914)发现X光晶体衍射,Guillaume(1920)发现合金中的反常性质,Bridgeman(1946)发现高压对材料的作用,Schockley、Bardeen、Brattain(1956)三人发现了半导体晶体管,Landau(1962)的物质凝聚态理论,Townes(1964)发现导致固体激光的出现,Neel(1970)发现材料的反铁磁现象,Anderson、Mott、van Vleck(1977)研究了非晶态中的电子性状,Wilson(1982)对相变的研究成功,Bednorz、Müller(1987)发现了30°K的超导氧化物,Smaller、Kroto(1996)发现C-60,Kilby(2000)发明第一块芯片,上述物理领域的诺贝尔获奖者的不少工作是直接针对材料的。至于化学家们,可以举出Giauque(1949)研究低温下的物性,Staudinger(1953)研究高分子聚合物,Pauling(1954)研究化学键,Natta、Ziegler(1963)合成高分子塑料,Barton、Hael(1969)研究有机化合物的三维构象,Heegler、Mcdermild、白川英树(2000)三人发现导电高分子。

近年来,材料科学的发展极为迅速。以钢铁工业为例,2003年,我国钢产量2.2亿t,是世界钢产量9.6亿t的23%,从1890年张之洞创办汉阳铁厂,直到1949年半个多世纪,中国产钢总量只有760万t,不足现在一个大型钢铁厂的年产量。1949年,全国产钢15.8万t,占世界钢产量的0.1%,只相当于现在全国半天的产量。1996年至今,我国钢产量年年超过1亿t,成为世界第一产钢大国。从6000万t增长到1亿t钢,美国经过13年,日本经过6年,中国为7年。这对于我国立足于工业化、现代化的世界,意义重大。但是我国又是一个钢的消费大国,2003年我国钢消费2.67亿t。我国钢厂结构不合理,10%以上的钢是由规模不到50万t以下的小型钢铁企业完成的,70%以上的生产能力是由150万t以下的中小钢铁企业完成的。因此,我国钢铁企业的能耗大,产品品质不高,许多高附加值的优质钢材仍需进口,2003年就进口了3717万t的优质钢材。为此,新一代钢铁材料的主要目标是探索提高钢材强度和使用寿命。经研究证明,纯铁的理论强度应能高于8000MPa,而目前碳素钢为200MPa级,低合金钢(如16Mn)约400MPa级,合金结构钢也只有800MPa级。日本拟于2010年将钢的强度和寿命各提高1倍,2030年再翻一番(即1t钢可相当于现在的4t),这个计划展示了材料挖潜的前景。

类比钢铁,其他材料也有很大潜力可挖。现代材料逐步向高比强度、比模量方向发展。20世纪上半叶,材料科学家利用合金化和时效硬化两个手段,把铝合金的强度提高到700MPa,这样,铝的比强度(强度/密度)达到2.64×106cm,是钢的比强度(0.64×106cm)的4倍有余。要达到同样的强度,铝合金的用量只有钢的1/4,这就是铝合金作为结构材料的极大优势。

美国1980年汽车平均质量为1500kg,1990年则为1020kg。每台车的铸铁用量由225kg降至112kg,铸铁的比例由15%减至11%;而铝合金由4%增至9%;高分子材料由6%增至9%。汽车重量减轻10%可使燃烧效率提高7%,并减少10%的污染。为了达到这个目标,要求整车重量要减轻40%~50%,其中,车体和车架的重量要求减轻50%,动力及传动系统必须减轻10%。美国福特公司新车型中使用的主要材料如下图所示。从图中可见,黑色金属用量将大幅减少,而铝、镁合金用量将大幅增加。

在航天航空工业上,材料减重获得的效益更大,卫星减重1kg,可减少发射推力5kg。一枚小型洲际导弹,减轻结构质量1kg,在有效载荷不变的条件下,可增加射程15km左右,可减轻导弹起飞质量约50kg。图2为航空器飞行速率与效益的关系。

在过去30年,燃气轮机叶片的工作温度平均每年提高6.67℃。而工作温度每提高83℃,就可使推力提高20%。在1960年以前,主要用锻造镍基高温合金,20世纪60年代初,美国采用在真空下的精密铸造,并铸出多冷却孔,提高工作温度50℃,70年代中期采用单晶合金(PWA1442),工作温度又提高50~100℃,目前采用第二代单晶(PWA1484),进一步改进冷却技术,再加上热障涂层,涡轮进口温度达到1650℃。推重比达15~20的叶片材料要能承受1930~2220℃的高温,所以涡轮叶片实际上是材料与制造工艺的结合,不仅要求高性能的材质,而且要求高度精确的成形技术。

材料成形技术一般包括铸造成形、锻压成形、焊接成形和非金属材料成形等工艺技术。材料成形技术是一门研究如何用热或常温成形的方法将材料加工成机器部件和结构,并研究如何保证、评估、提高这些部件和结构的安全可靠度和寿命的技术科学。它属于机械制造学科。材料成形过程与金属切削过程不同,在大部分成形过程中,材料不仅发生几何尺寸的变化,而且会发生成分、组织结构及性能的变化。因此材料成形学科的任务不仅是要研究如何使机器部件获得必要的几何尺寸,而更重要的是要研究如何通过过程控制获得一定的化学成分、组织结构和性能,从而保证机器部件的安全可靠度和寿命。

我国已是制造大国,仅次于美、日、德,位居世界第四。20世纪末和21世纪初,我国的材料成形技术有了突飞猛进的发展,如三峡水利建设中,440t不锈钢转轮、750t蜗壳和300t的闸门都是世界上最重的钢铁结构。最近建成的30万t超级大型油轮(长333m ,宽58m)、1000t级的大型热壁加氢反应器(壁厚280mm)、空间环境模拟装置(直径18m、高22m的大型不锈钢真空容器)等都是材料及材料成形工艺的重大成就。

材料成形加工是制造业的重要组成部分。据统计,全世界75%的钢材经塑性加工,45%的金属结构用焊接得以成形。我国铸件年产量超过1400万t,成为世界铸件生产第一大国。汽车工业是材料成形技术应用最广的领域。以汽车生产为例,1953~1992年40年间,我国共生产汽车100万辆,而2003年一年全国就生产汽车207万辆,预计到2010年,年产量将达到1000万辆左右,成为世界汽车生产第二大国。据统计,2000年全球汽车用材总重量的65%由钢材(约45%)、铝合金(约13%)及铸铁(约7%)通过锻压、焊接和铸造成形,并通过热处理及表面改性获得最终所需的实用性能。

对国防工业而言,由于现代武器装备性能提高很快,相应的结构、材料和成形制造工艺就成为关键。以航空航天工业为例,中国航空业40余年来共生产交付了各种类飞机14000余架,各种类发动机50000余台,海防和空-空战术导弹14000余枚,目前已能成批生产第二代军用飞机,正在研制相当于国际水平的第三代军用飞机,从“九五”开始开展了第四代军用飞机的预研。现代飞机要求超音速巡航、非常规机动性、低环境污染、低油耗、全寿命成本等性能,很大程度上是依靠发动机性能的改进和提高来实现的。发动机性能提高的目标是提高推重比、功率重量比、增压比和涡轮前温度,国外现役机推重比7~8,在研机9~10,预研机15~20,我国相应为5.5、6.5~7.

5、8~10。要实现上述指标,要不断发展先进涡轮盘材料和这些材料的精密成形和加工技术。因此,材料精密成形和加工技术成为关系国防安全的一种关键技术。

材料成形技术在21世纪发展过程中,逐步形成“精密”、“优质”、“快速”、“复合”、“绿色”和“信息化”的特色。

1.精密的材料成形特征 随着材料资源和能源的日益紧缺,材料的少无切削加工已作为制造技术发展的重要方向。材料成形加工的精密化,从尺度上看,已进入亚微米和纳米技术领域。表现为零件成形的尺寸精度正在从近净成形(Near Net Shape Forming)向净成形(Net Shape Forming),即近无余量成形方向发展。毛坯与零件的界线越来越小。采用的主要方法是多种形式的精铸(如熔模铸造、陶瓷型铸造、消失模铸造、挤压铸造、充氧压铸、流变铸造、触变铸造等)、精密压力加工(如精锻、零件精轧、精冲、粉末冶金温压成形、冷温挤压、超塑成形、反压力液压成形、铸锻工艺、同步成形工艺、变压力压胀形技术等)、精密焊接与切割(如等离子弧焊、电子束焊、激光焊、脉冲焊、窄间隙焊、激光和电弧复合加热焊、等离子弧切割、激光切割、水射流切割等)等。

2.优质的成形技术特征 反映成形加工的优质特征是产品近无缺陷、零缺陷。此缺陷是指不致引起早期失效的临界缺陷的概念。采取的主要措施有:采用先进工艺、净化熔融金属、增大合金组织的致密度,为得到健全的铸件、锻件奠定基础;采用模拟技术、优化工艺技术,实现一次成形及试模成功,保证质量;加强工艺过程控制及无损检测,及时发现超标零件;通过零件安全可靠性能研究及评估,确定临界缺陷量值等。美国GM公司采用CAE技术,每年节省试制费用数百万美元。

3.快速的成形技术特征 表现在各种新型高效成形工艺不断涌现,新型铸造、锻压、焊接方法从不同角度提高生产率。采取的主要措施有,将逆向设计 (RE)、快速成形(RP)、快速制模(RT)技术相结合,建立起快速制造平台;应用数值模拟技术于铸、锻、焊和热处理等工艺设计中,并与物理模拟和专家系统结合来确定工艺参数、优化工艺方案,预测加工过程中可能产生的缺陷及防止措施,控制和保证成形工件的质量。波音公司采用的现代产品开发系统,将新产品研制周期从8年缩短到5年,工程返工量减少了50%。日本丰田公司在研制2002年嘉美新车型时缩短了研发周期10个月,减少了试验样车数量65%。德国RIVAGE公司以一辆旧保时捷跑车作基础,以逆向工程和快速制造为手段,7个月造出一辆概念新车。

4.复合的材料成形特征 激光、电子束、离子束、等离子束等多种新能源和能源载体的引入,形成多种新型成形方法与改性技术,其中以各种形式的激光成形技术发展最迅速。一批新型复合工艺的诞生,如超塑成形/扩散连接技术、爆炸焊/热轧复合成形技术等造就了一些特殊材料如超硬材料、复合材料、陶瓷等的应用。此外,复合的特征还表现在冷热加工之间、加工过程、检测过程、物流过程、装配过程之间的界限趋向淡化、消失,而复合、集成于统一的制造系统之中。

5.绿色的材料成形特征 成形加工向清洁生产方向发展,其主要的技术意义在于: ①高效利用原材料,对环境清洁;②以最小的环境代价和能源消耗来获取最大的经济效益; ③符合持续发展和生态平衡。美国在展望2020年的制造业时,把材料净成形工艺发展为“无废弃物成形加工技术(Waste-free Proce),即加工过程中不产生废弃物,或产生的废弃物能被整个制造过程中作为原料而利用,并在下一个流程中不再产生废弃物。由于无废物加工减少了废料、污染和能量的消耗,成为今后推广的重要绿色制造技术。

6.信息化特征 成形工艺逐步向柔性、集成系统发展,大量应用了各种信息和控制技术,如柔性压铸系统,轧、锻柔性生产线、搅拌摩擦焊机器人柔性生产线、弧焊/压焊焊接机器人生产线等;使用远程控制和无人化成形工厂,质量控制向控制过程智能化方向发展等等,都使材料成形技术注入自动化、信息化特征。

综上所述,现代科学的发展使材料成形技术的内容远远超出了传统的热加工范围。现代材料成形技术可拓展为:一切用物理、化学、冶金原理制造机器部件和结构,或改进机器部件化学成分、微观组织及性能,并尽可能采用复合制造、绿色制造、信息化制造获得优质毛坯或零件的现代制造方法。

所有的零件加工工艺在成形学上按对材料的操作方式可归结为三类,即受迫成形、去除成形和堆积成形。

(1)受迫成形 利用材料的流动性和塑性在特定外力或边界的约束下成形的方法。铸造、锻压以及注塑成形工艺都属于受迫成形。在这种成形方式中,能量的使用体现在使零件发生形态变化或塑性形状变化上;零件的制造信息(几何信息、工艺信息和控制信息等)经预处理后以形状信息的形式物化于工具之中,如模具、型腔等。这种信息处理过程与物理制造过程的结合形式,具有较好的刚性,即制造零件时重复性好,但其柔性较差。零件信息的任何改变都将导致工具的重新制造,因而较适用于定型产品的大批量生产方式或毛坯制造。

(2)去除成形 运用材料的可分离性,把一部分材料(裕量材料)有序地从基体分离出去而成形的方法。传统的车、铣、刨、磨等机加工工艺和激光、电火花加工工艺均属于去除成形。在这种成形方式中,零件制造信息体现在去除材料的顺序和每一步材料的去除量上,即信息通过控制刀具(激光、电火花等也可看作去除刀具)与待加工工件的相对运动,实现材料的有序去除。与受迫成形相比,这种信息过程与物理过程的结合方式具有较大的柔性,实际上,可以把刀具与工件的相对运动看作是一种易于修改、易于编程和易于控制的“动态模具”。但这种零件加工方式由于受到刀具与工件相对运动的条件限制,难以加工形状极为复杂的零件。

(3)堆积成形 利用材料的可连接性,将材料有序地合并堆积起来而成形的方法。快速成形是堆积成形的典型方法,其次,一些焊接和喷镀也可视为堆积成形。快速成形的特点是从无到有,从小到大有序进行,零件的制造信息体现在材料结合的顺序以及每一次材料转变量与深度的控制上,即信息通过控制每个单元的制造和各个单元的结合而实现对整个成形过程的控制。在堆积成形过程中,信息过程与物理过程的结合达到比较高级的阶段,没有“模具”、“卡具”和“切削加工”的概念,成形零件不受复杂程度的限制,它提供了一种直接地并完全自动地把三维CAD模型转换为三维物理模型或零件的制造方法。

第一章 工程材料

1.1 概述

材料是现代文明的三大支柱之一,也是发展国民经济和机械工业的重要物质基础。科学技术的进步,推动了材料工业的发展,使新材料不断涌现。石油化学工业的发展,促进了合成材料的兴起和应用;20世纪80年代特种陶瓷材料又有很大进展,工程材料随之扩展为包括金属材料、有机高分子材料(聚合物)和无机非金属材料三大系列的全材料范围。

1.1.1 金属材料的发展

人类早在6000年以前就发明了金属冶炼。我国青铜冶炼始于公元前2000年(夏代早期)。古埃及在5000年以前,就用含镍7.5%的陨石铁做成铁球。我国春秋战国时期,已经大量使用铁器。铸铁的发展经历了5000年的漫长岁月,只是到了瓦特发明蒸气机以后,由于在铁轨、铸铁管制造中的大量应用,才走上工业生产的道路。15世纪到18世纪,从高炉炼钢到电弧炉炼钢,奠定了近代钢铁工业的基础。

19世纪后半叶,欧洲社会生产力和科学技术的进步,推动了钢铁工业的大步发展,扩大了钢铁生产规模,提高了产品质量。从20世纪50年代到2003年,全世界的钢产量由2.1亿吨增加到9.6亿吨。而我国2003年钢产量达到2.2亿吨,超过20世纪50年代全球钢产量,跃居全球钢产量首位。 1.1.3 新材料的发展趋势

随着社会的发展和科学技术的进步,新材料的研究、制备和加工应用层出不穷。每一种重要的新材料的发现和应用,都把人类支配自然的能力提高到一个新的水平。工程材料目前正朝高比强度(单位密度的强度)、高比模量(单位密度的模量)、耐高温、耐腐蚀的方向发展。今日先进材料强度比早期材料增长50倍。

1.1.3 新材料的发展趋势

随着社会的发展和科学技术的进步,新材料的研究、制备和加工应用层出不穷。每一种重要的新材料的发现和应用,都把人类支配自然的能力提高到一个新的水平。工程材料目前正朝高比强度(单位密度的强度)、高比模量(单位密度的模量)、耐高温、耐腐蚀的方向发展。今日先进材料强度比早期材料增长50倍。 1.2 固体材料的性能

固体材料的主要性能包括力学性能、物理性能、化学性能、工艺性能等。力学性能是工程材料最主要的性能,又称机械性能,指材料在外力作用下表现出来的性能,包括弹性、强度、塑性、硬度、韧性、疲劳强度、蠕变和磨损等。外力即载荷,常见的各种外载荷如图1-2所示。

1.强度和塑性

材料强度指材料在达到允许的变形程度或断裂前所能承受的最大应力,如弹性极限、屈服点、抗拉强度、疲劳极限、蠕变极限等等。按外力作用的方式不同,强度可分为抗拉、抗压、抗弯、抗剪强度等。工程上最常用的强度指标有屈服强度和抗拉强度。

材料的强度、塑性指标可以通过实验测定。动画为低碳钢拉伸实验测得的应力-应变图。实验时将材料做成如图标准试样,试样在外力作用下,其内部产生一种内力,其数值大小与外力相等,方向相反。材料单位面积上的内力称为应力(Pa),以ζ表示。

1)弹性和弹性模量

试样加载后应力不超过ζe,若卸载,试样能恢复原状,这种材料不产生永久变形的性能,称为弹性。ζe为材料不产生永久变形时所能承受的最大应力,称为弹性极限。 OP的斜率E(E=ζ/ε)称为材料的弹性模量,即引起单位弹性变形所需要的应力。

2) 塑性 载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留一部分残余变形。这种不能恢复的残余变形,称为塑性变形,产生塑性变形而不断裂的性能称为塑性。塑性 的大小用伸长率δ和断面收缩率ψ表示。

3)强度

在外力作用下,材料抵抗变形和断裂的能力称为强度。按外力作用方式不同,可分为抗拉强度、抗压强度、抗扭强度等,以抗拉强度最为常用。当材料承受拉力时,强度主要是指屈服强度ζs和抗拉强度ζb。

(1)屈服强度σs 在S点(称屈服点)出现横向震荡曲线或水平线段,这表示拉力不再增加,但变形仍在进行,此时若卸载,试样的变形不能全部消失,产生微量的塑性变形。ζs即表示材料在外力作用下开始产生塑性变形时的最低应力,即材料抵抗微量塑性变形的能力。

需要指出,大多数金属材料在拉伸时没有明显的屈服现象,按GB228-87要求,取规定非比例伸长与原标距长度比为0.2%时的应力,记为ζp0.2,作为屈服强度指标,称为条件屈服强度,可用ζ0.2表示。

(2)抗拉强度 抗拉强度为动画所示的σb值,是试样保持最大均匀塑性变形的极限应力,即材料被拉断前的最大承载能力。当载荷达到Fb时,试样的局部截面缩小,产生所谓的“缩颈”现象。由于试样局部截面逐渐缩小,故载荷也逐渐减小,当达到拉伸曲线上k点时,试样发生断裂 。 σs与σb的比值称为屈强比,其值一般在0.65~0.75之间。屈强比愈小,工程构件的可靠性愈高,万一超载也不会马上断裂;屈强比愈大,材料的强度利用率愈高,但可靠性降低。抗拉强度是零件设计时的重要参数。合金化、热处理、冷热加工对材料的σs与σb均有很大的影响。

冲击韧度

评定材料抵抗大能量冲击载荷能力的指标称为冲击韧度αk。常用一次摆锤冲击弯曲试验来测定金属材料的冲击韧度。其测定方法是按GB229-84制成带U型缺口的标准试样,将具有质量G(N)的摆锤举至高度为H(m),使之自由落下,将试样冲断后,摆锤升至高度h(m)。如试样断口处的截面积为S(cm)。则冲击韧性αk 的值为:αk =G(H-h)/S(J/cm) 材料的冲击韧度值主要取决于其塑性,并与温度有关。

224.疲劳强度

许多机器零件的弹簧、轴、齿轮等,在工作时承受交变载荷,当交变载荷的值远远低于其屈服强度时发生断裂,这种现象称为疲劳断裂。疲劳断裂与在静载作用下材料的断裂不同,不管是脆性材料还是韧性材料,疲劳断裂都是突然发生的,事先无明显的塑性变形,属于低应力脆断。

5.断裂韧度

一些工程结构件和机器零件在低于许用应力的条件下工作,产生无明显塑性变形的断裂,这种断裂称为低应力脆断。低应力脆断是由于材料内部已存在的宏观裂纹失稳扩展引起的。 材料中存在一条长度为2a的裂纹,在与裂纹方向垂直的外加拉应力ζ作用下,裂纹尖端附近的应力分布不再均匀,存在严重的应力集中现象,形成裂纹尖端应力集中场,其大小可用应力强度因子KⅠ来描述。

6.金属的高温力学性能

金属材料随温度的升高,弹性模量E、屈服强度ζS、硬度等值降低,而塑性增加 的现象称高温蠕变。 小资料:纽约世界贸易中心大楼曾是世界第一高楼,它高411米,单个塔楼的重量约5万吨;撞击大楼的波音757飞机起飞重量104吨,波音767飞机起飞重量156吨,它们的飞行速度大约是每小时1000公里。 这次撞击大楼的波音757飞机大约可载35吨燃油,波音767飞机可载51吨燃油,由于是从美国东部飞往西部的远程航班,所以飞机上的油箱估计装满了燃油。第一波飞机撞击世贸大楼的北部塔楼接近顶部的位置。大火燃烧了1小时43分钟后世贸大楼北部塔楼才倒塌。第二波飞机于撞击世贸大楼的南部塔楼。撞击位置较低,上层压力很大,大火燃烧了1小时零2分钟后,后被撞击的南部塔楼反而率先倒塌。

1.3 金属的结构

固态物质按原子的聚集状态分为晶体和非晶体。固态金属基本上都是晶体,非金属物质大部分也是晶体,如金刚石、硅酸盐、氧化镁等,而常见的玻璃、松香等,则为非晶体。 1.3.1金属的晶体结构 1.晶体和金属的特性

原子在空间呈规则排列的固体物质称为“晶体”。非晶体的原子则是无规律、无次序地堆积在一起的。

● 金属键

金属键的特点是没有饱和性和方向性。自由电子的定向移动形成了电流,使金属表现出良好的导电性;正电荷的热振动阻碍了自由电子的定向移动,使金属具有电阻;同时金属具有正的温度系数;自由电子能吸收可见光的能量,使金属具有不透明性;当自由电子从高能级回到低能级时,将吸收的可见光的能量以电磁波的形式辐射出来,使金属具有光泽;晶体中原子发生相对移动时,正电荷与自由电子仍能保持金属键结合,使金属具有良好的塑性。

2.晶格、晶胞和晶格常数

为了便于分析晶体中原子排列规律及几何形状,将每一个原子假设成一个几何点,忽略其尺寸和重量,再用假想线把这些点连接起来,得到一个表示金属内部原子排列规律的抽象的空间格子,称为“晶格”所示。

晶格中各种方位的原子面称为“晶面”,构成晶格的最基本几何单元称为“晶胞”。晶胞的大小以其各边尺寸a、b、c表示,称为“晶格常数”,以 (埃)为单位(1 =1×10-8cm)。晶胞各边之间的夹角以α、β、γ表示,如动画所示。

3.晶向与晶面

1)立方晶系的晶向指数

在晶体中,任意二个原子之间的连线称为原子列,其所指方向称为晶向。确定立方晶系的晶向指数方法如下:

(1)选定晶胞某一点阵为原点,以晶胞3条棱边为坐标轴,以棱边的长度为单位长度;

(2)过原点作一有向线平行于待定晶向,所有相互平行的晶向有相同的晶向指数[uvw],如果方向相反,则它们的晶向指数的数值相同,但符号相反;

(3)取有向线段上任一点的座标值化为最简整数,加以方括号,[uvw]即为晶向指数。 例如,当座标值X=1,Y=2, Z=1/3时,其晶向指数为[361]。

2)立方晶系的晶面指数

晶体中各种方位的原子面称为晶面。立方晶系的晶面指数通常采用密勒指数法确定,即晶面指数是根据晶面与3个坐标轴的截距来决定。晶面指数的一般表示形式为(h k l),其确定步骤如下:

(1) 建立坐标:选晶胞中不在所求晶面上的某一晶胞阵点为坐标原点(以免出现零截距),以晶胞3条棱边为坐标轴,以晶格常数为单位;

(2) 取晶面的三坐标截距值为倒数,并化为最简整数,依次计入圆括号( )内,即为该晶面的晶面指数。

与晶向指数相似,所有相互平行的晶面都有相同的晶面指数。指数值相同而符号相反的两个晶面,如(100)与( ),则平行地分布在原点两边。

4.常见的晶格类型

根据晶胞的三条棱边是否相等、三个夹角是否相等以及是否为直角关系,晶体学将所有晶体分为7个晶系,14种空间点阵。称作布喇菲空间点阵。 大多数金属属于以下三种晶格类型。 1) 体心立方晶格

其中心的原子周围有8个最邻近原子环绕,称其配位数为8。

2) 面心立方晶格

面心立方晶格的晶胞由八个原子构成一个立方体,在立方体六个面的中心各有一个原子,晶胞角上的原子为相邻的八个晶胞所共有,每个晶胞实际上只占有1/8个原子,中心面上的原子为二个晶胞共有,故晶胞中实际原子数为 4个。属于这类晶格的金属有:γ-Fe、铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)等。

3) 密排六方晶格

密排六方晶格的晶胞是一个六方柱体。柱体的上、下底面六个角及中心各有一个原子,柱体中心还有三个原子。柱体角上的原子为相邻六个晶胞共有,上、下底面的原子为两个晶胞共有,柱体中心的三个原子为该晶胞独有,故晶胞中实际原子数为6个。属于这类晶格的金属有:镁Mg)、锌(Zn)、铍(Be)、镉(Cd)等。

1.3.2实际金属的晶体结构

1.多晶体与亚结构

单晶体在不同晶面和晶向的力学性能不同,这种现象称为“各向异性”。由多晶粒构成的晶体结构称为“多晶体”,多晶体呈现各向同性。同一颗晶粒内还存在许多尺寸更小、位向差也很小(1°~2°)的小晶块,称为“亚晶粒”,亚晶粒的边界称为“亚晶界”。

2.晶格缺陷

在实际金属晶体中,由于结晶条件或加工等方面的影响,使原子的排列规则受到破坏,因而晶体内部存在大量的晶格缺陷。根据晶格缺陷的几何形状特点,可分为三类。

1) 点缺陷

点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如“间隙原子”、“置换原子”和“空位”。

2) 线缺陷

线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸很小的缺陷,呈线状分布,其具体形式是各种类型的位错。较简单的一种是“刃型位错”,好象沿着某个晶面插入一列原子但又未插到底,如同刀刃切入一样。多出的一列原子位于晶体的上部称为“正刃型位错”,用符号“┴”表示;多出的一列原子位于晶体的下部称为“负刃型位错”, 用符号“┬”表示。

3) 面缺陷

面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很小的缺陷,如晶界和亚晶界。多晶体中存在晶界和亚晶界,晶界和亚晶界处原子不规则排列,导致晶格畸变,使晶界处能量高出晶粒内部,使晶界表现出与晶粒内部不同的性能。如晶界易被腐蚀;晶界的熔点较低;晶界处原子扩散速度较快;晶界的强度、硬度较晶粒内部高。

1.4 金属的结晶

• 液体的结构

液体的结构不同于气体。有以下特点:

① 存在短程有序现象,即液体中微小体积范围内存在着紧密接触规则排列的原子团,一瞬间又变成另外的原子团。② 存在结构起伏现象,即液态金属中的原子集团此起彼伏地不断产生与消失的现象。此现象也称为相起伏。③ 存在成分起伏现象,即固溶体合金的液体中微小体积范围内偏离液相平均成分现象。④ 在一定条件下形成长程有序,即晶体中大范围原子有序稳定排列。

金属溶液在凝固后一般都以晶质状态存在,即内部原子由不规则的排列转变到规则排列,形成晶体的过程,称为结晶过程。

1.4.1 纯金属的冷却曲线和过冷现象

1.纯金属的冷却曲线

纯金属都有一个固定的熔点或结晶温度。金属的结晶温度可以用热分析法测定。将液态金属放在坩埚中缓慢冷却,在冷却过程中记录温度随时间变化的数据,并将其绘成如图1-19所示的纯金属冷却曲线。

推荐第8篇:3D打印快速成型技术

特种加工论文

题目3D打印快速成型技术

姓名 专业 班级 学号

3D打印快速成型技术

摘要:

本文主要介绍了特种加工中3D打印快速成型技术,首先介绍它的加工原理,然后分析它的特点、加工方式,然后说明其在实际生产中的主要应用以及发展方向。

关键词:特种加工技术,3D打印快速成型,特点,应用。

Abstract:

This article mainly introduced the special proceing of 3 d printing rapid prototyping technology, introduces its proceing principle, and analyzes its characteristics, proceing methods, and then explain the main application in practical production and the development direction.

Key words:Special proceing technology, 3 d printing rapid prototyping, characteristics, application.

一、引言

3D打印(3D PRINTING )即3D打印技术,又3D打印制造是20世纪80年代才兴起的一门新兴的技术,是21世纪制造业最具影响的技术之一。随着计算机与网络技术的发展,信息高速公路加快了科技传播的速度,产品的生命周期越来越短,企业之间的竞争不再只是质量和成本上的竞争,而更重要的是产品上市时间的竞争。因此,通过计算机仿真和3D打印增加产品的信息量,以便更快的完成设计及其制造过程,将产品设计和制造过程的时间周期尽量缩短,防止投产后发现问题造成不可挽回的损失。

3D打印技术是由CAD模型直接驱动的快速制造复杂形状的三维实体的技术总称。简单的讲,3D打印制造技术就是快速制造新产品首版样件的技术,它可以在没有任何刀具、模具及工装夹具的情况下,快速直接的实现零件的单件生产。该技术突破了制造业的传统模式,特别适合于新产品的开发、单件或少批量产品试制等。它是机械工程、计算机CAD、电子技术、数控技术、激光技术、材料科学等多学科相互渗透与交叉的产物。它可快速,准确地将设计思想转变为具有一定功能的原型或零件,以便进行快速评估,修改及功能测试,从而大大缩短产品的研制周期,减少开发费用,加快新产品推向市场的进程。

自从美国3D公司在1987年推出世界上第一台商用快速原形制造设备以来,快速原形技术快速发展。投入的研究经费大幅增加,技术成果丰硕。原形化系统产品的销量高速增长。在这方面美国,日本一直处于领先地位,我国在这方面起步较晚,但是奋起直追,开展研究并取得一定成果,国内也有些成熟的产品问世,他们正在各种生产领域上发挥着作用。

二、打印系统的工作原理

3D打印技术是一种逐层制造技术,它采用离散/堆积成型原理,其过程是:先得到所需零件的计算机三维曲面或实体模型;然后根据工艺要求,将其按一定厚度进行分层,将原来的三维模型变成二维平面信息,即离散过程;再将分层后的数据进行一定的处理,加入加工参数,产生数控代码;在微机控制下,数控系统以平面加工方式,有序地连续加工出每个薄层,并使它们自动粘接而成型,从而制造出所需产品的实物样件或成品,这就是材料的堆积过程。已知自由曲面CAD模型,如果使用传统的方法和数控机床进行加工,那么复杂的自由曲面,成本高,效率低。近年来,3D打印即广泛的被运用于工业生产中。各种3D打印技术的过程都包括CAD模型建立、生成STL文件格式、3D打印制作、模型分层切片和后置处理五个步骤。

三、打印过程

(1)三维设计

三维打印的设计过程是:先通过计算机建模软件建模,再将建成的三维模型“分区成逐层的截面,即切片,从而指导打印机逐层打印。

设计软件和打印机之间协作的标准文件格式是STL文件格式。一个STL文件使用三角面来近似模拟物体的表面。三角面越小其生成的表面分辨率越高。PLY是一种通过扫描产生的三维文件的扫描器,其生成的VRML或者WRL文件经常被用作全彩打印的输入文件。 (2)切片处理

打印机通过读取文件中的横截面信息,用液体状、粉状或片状的材料将这些截面逐层地打印出来,再将各层截面以各种方式粘合起来从而制造出一个实体。这种技术的特点在于其几乎可以造出任何形状的物品。

打印机打出的截面的厚度(即Z方向)以及平面方向即X-Y方向的分辨率是以dpi(像素每英寸)或者微米来计算的。一般的厚度为100微米,即0.1毫米,也有部分打印机如ObjetConnex 系列还有三维 Systems\' ProJet 系列可以打印出16微米薄的一层。而平面方向则可以打印出跟激光打印机相近的分辨率。打印出来的“墨水滴”的直径通常为50到100个微米。用传统方法制造出一个模型通常需要数小时到数天,根据模型的尺寸以及复杂程度而定。而用三维打印的技术则可以将时间缩短为数个小时,当然其是由打印机的性能以及模型的尺寸和复杂程度而定的。

传统的制造技术如注塑法可以以较低的成本大量制造聚合物产品,而三维打印技术则可以以更快,更有弹性以及更低成本的办法生产数量相对较少的产品。一个桌面尺寸的三维打印机就可以满足设计者或概念开发小组制造模型的需要。 (3)完成打印

三维打印机的分辨率对大多数应用来说已经足够(在弯曲的表面可能会比较粗糙,像图像上的锯齿一样),要获得更高分辨率的物品可以通过如下方法:先用当前的三维打印机打出稍大一点的物体,再稍微经过表面打磨即可得到表面光滑的“高分辨率”物品。 有些技术可以同时使用多种材料进行打印。有些技术在打印的过程中还会用到支撑物,比如在打印出一些有倒挂状的物体时就需要用到一些易于除去的东西(如可溶的东西)作为支撑物。

四、打印造型法主要种类

(1)利用激光固化树脂材料的光造型法(Stereolithography)。在树脂槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的树脂薄片。然后,工作台下降一层薄片的高度,以固化的树脂薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢粘结在前一层上,如此重复不已,直到整个产品成型完毕。最后升降台升出液体树脂表面,取出工件,进行清洗、去处支撑、二次固化以及表面光洁处理等。 激光立体造型制造精度目前可达±0.1mm,主要用作为产品提供样品和实验模型。光敏树脂选择性固化快速成型技术适合于制作中小形工件,能直接得到树脂或类似工程塑料的产品。主要用于概念模型的原型制作,或用来做简单装配检验和工艺规划。

(2)粉末材料选择性烧结(Selected Laser Sintering)是一种快速原型工艺,简称SLS。

粉末材料选择性烧结采用二氧化碳激光器对粉末材料(塑料粉等与粘结剂的混合粉)进行选择性烧结,是一种由离散点一层层堆集成三维实体的快速成型方法。 粉末材料选择性烧结采用二氧化碳激光器对粉末材料(塑料粉、陶瓷与粘结剂的混合粉、金属与粘结剂的混合粉等)进行选择性烧结,是一种由离散点一层层对集成三维实体的工艺方法。

在开始加工之前,先将充有氮气的工作室升温,并保持在粉末的熔点一下。成型时,送料筒上升,铺粉滚筒移动,先在工作平台上铺一层粉末材料,然后激光束在计算机控制下按照截面轮廓对实心部分所在的粉末进行烧结,使粉末溶化继而形成一层固体轮廓。第一层烧结完成后,工作台下降一截面层的高度,在铺上一层粉末,进行下一层烧结,如此循环,形成三维的原型零件。最后经过5-10小时冷却,即可从粉末缸中取出零件。未经烧结的粉末能承托正在烧结的工件,当烧结工序完成后,取出零件。粉末材料选择性烧结工艺适合成型中小件,能直接的到塑料、陶瓷或金属零件,零件的翘曲变形比液态光敏树脂选择性固化工艺要小。但这种工艺仍需对整个截面进行扫描和烧结,加上工作室需要升温和冷却,成型时间较长。此外,由于受到粉末颗粒大小及激光点的限制,零件的表面一般呈多孔性。在烧结陶瓷、金属与粘结剂的混合粉并得到原型零件后,须将它置于加热炉中,烧掉其中的粘结剂,并在孔隙中渗入填充物,其后处理复杂。粉末材料选择性烧结快速原型工艺适合于产品设计的可视化表现和制作功能测试零件。由于它可采用各种不同成分的金属粉末进行烧结、进行渗铜等后处理,因而其制成的产品可具有与金属零件相近的机械性能,但由于成型表面较粗糙,渗铜等工艺复杂,所以有待进一步提高。

(3)熔融造型法熔融造型法(FDM)。工作时直接由计算机控制。喷头挤出热塑材料并按照层面几何信息逐层由下而上制作出实体模型。FDM技术的最大特点是速度快(一般模型仅需几小时即可成型)、无污染,在原型开发和精铸蜡模等方面得到广泛应用。FDM生产可选成型材料种类较多,原材料费用低,因而的到广泛的应用。但是FDM也有其固有的缺点。精度低,热融制造中很难控制精度,难以制造结构复杂的构件,且材料的制造是处于熔点附近,因而构件的强度小,也不适合制造大型的制件,这些特点都限制了FDM的应用范围。

(4)热可塑造型法(SLS)。该方法是用2CO激光熔融烧结树脂粉末的方式制作样件。工作时,由2CO激光器发出的光束在计算机控制下,根据几何形体各层横截面的几何信息对材料粉末进行扫描,激光扫描处粉末熔化并凝固在一起。然后,铺上一层新粉末,再用激光扫描烧结,如此反复,直至制成所需样件。

五、3D打印制造特点

3D打印技术突破了“毛坯→切削→加工品”传统的零件加工模式,开创了不用刀具制作零件的先河,是一种利用的薄层叠加的加工方法。与传统的切削加工方法相比,3D打印加工至少具有以下特点:

(1)可迅速制造出具有自由曲面和更为复杂形态的零件,如零件中的凹槽、凸肩和空心部分等,这些利用传统工艺很难加工的,从而大大降低了新产品的开发成本和开发周期。在时间尤其重要的今天,它可以为企业节省大量的研发时间。

(2)它属于非接触加工,不需要切削加工所必需的刀具和夹具,无刀具磨损和切削力影响。只需要一套特定的设备,工序简单,没有传统加工的烦琐的工序。传统的加工中每一个工序都需要机床等复杂加工设备,且加工过程复杂,对操作人员的技术要求很高。

(3)无振动、噪声和切削废料。可以为企业节省宝贵的试制原料,简化生产。传统的制造中由于多是机械制造,噪音较大。且加工时边角料多。造成资源的浪费。

(4)可实现完全自动化生产。操作可以由电脑控制,无需人的过多干预。真正实现了自动化。

(5)加工效率高,能快速制作出产品实体模。精度高,生产的产品质量好。 (6)3D打印技术在产品开发中的关键作用和重要意义是很明显的,它不受复杂形状的限制,可迅速地将示于计算机屏幕上的设计变为进一步评估的实物。根据原型,可对设计的正确性、造型的合理性、可装配性和干涉性,进行具体的检验。通过原型的检验可使开发产品中的风险减到最底的限度。

六、主要限制因素

(1)材料限制:虽然高端工业印刷可以实现塑料、某些金属或者陶瓷打印,但无法实现打印的材料都是比较昂贵和稀缺的。另外,打印机也还没有达到成熟的水平,无法支持日常生活中所接触到的各种各样的材料。虽然研究者们在多材料打印上已经取得了一定的进展,但除非这些进展达到成熟并有效,否则材料依然会是3D打印的一大障碍。

(2)机器限制:3D打印技术在重建物体的几何形状和机能上已经获得了一定的水平,几乎任何静态的形状都可以被打印出来,但是那些运动的物体和它们的清晰度就难以实现了。这个困难对于制造商来说也许是可以解决的,但是3D打印技术想要进入普通家庭,每个人都能随意打印想要的东西,那么机器的限制就必须得到解决才行。

七、3D打印技术成型主要应用

应用领域:

3D打印机的应用对象可以是任何行业,只要这些行业需要模型和原型。以色列的Stratasys公司认为,3D打印机需求量较大的行业包括政府、航天和国防、医疗设备、高科技、教育业以及制造业。

八、结束语

最近两年,3D打印技术概念引起了国内外政府、军方、企业的高度重视,但其实3D打印技术已经发展有30余年。美国著名智库高德纳(Gartner)公司2012年度《高德纳新兴IT技术显示度周期特别报告》认为,3D打印技术正处于高循环曲线显示度顶点。预计该技术在未来2~5年内到达生产力成熟期。然而,通过分析发现,3D打印技术却很难取代传统制造工艺,在军事领域的应用主要集中在对受损部件的修复、复杂结构部件的生产以及小批量部件生产等方面,与传统制造工艺形成了较好的互补关系。例如,美国计划使用3D打印技术在太空空间站上。

参考文献:

[1] 3D打印 (简介、原理及技术) .designspark.2013-10-29.

[2] 颜永年,张人佶.快速制造技术的发展道路与发展趋势[J].电加工与模具,2007,2:25-29.[3] (美)胡迪·利普森 梅尔芭·库曼 .3D打印:从想象到现实.2013年4月

[4] 王运赣.3D打印技术(修订版).2014-07-01

[5] 杨继全.3D打印:面向未来的制造技术.2014年02月

[6] 白基成,刘晋春,郭永丰,杨晓冬.特种加工.2013.05

References:

[1] 3 d printing (introduction, principle and technology).Designspark.2013-10-29.

[2] yongnian yan, zhang Ji.The development and trend of development of rapid manufacturing technology [J].Electric proceing and mould, 2007, 2:25 to 29.

[3] (America) woody, lipson MEL ba, Manhattan.3 d printing: from imagination to reality.In April 2013.

[4] Wang Yun jiangxi.3 d printing (revised edition).2014-07-01.

[5] ji-quan Yang.3 d printing: manufacturing technology for the future.02, 2014.

[6], Bai Ji Liu Jinchun Guo Yongfeng, jack Yang.Special proceing.2013.05.

推荐第9篇:机械工程材料及成型技术基础

《机械工程材料及成型技术基础》

班级:机自144 姓名:董

浩 学号:201406024407

金属材料在机械行业中的应用

一、金属材料的特性

1、机械性能

1.1强度

这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂。

1.2塑性

金属材料在外力作用下产生永久变形而不破坏的最大能力称为塑性,通常以拉伸试验时的试样标距长度延伸率δ(%)和试样断面收缩率ψ(%)表示。

1.3硬度

金属材料抵抗其他更硬物体压入表面的能力成为硬度,或者说是材料对局部塑性变形的抵抗力。根据硬度的测定方法,主要可以分为:布氏硬度和洛氏硬度。

1.4韧性

金属材料在冲击载荷作用下抵抗破坏的能力成为韧性。

2、化学性能

金属与其他物质引起化学反应的特性称为金属的化学性能。在实际应用中主要考虑金属的抗蚀性、抗氧化性(又称作氧化抗力,这是特别指金属在高温时对氧化作用的抵抗能力或者说稳定性),以及不同金属之间、金属与非金属之间形成的化合物对机械性能的影响等等。在金属的化学性能中,特别是抗蚀性对金属的腐蚀疲劳损伤有着重大的意义。

3、物理性能

3.1密度

ρ=P/V 单位克/立方厘米或吨/立方米,式中P为重量,V为体积。在实际应用中,除了根据密度计算金属零件的重量外,很重要的一点是考虑金属的比强度(强度σb与密度ρ之比)来帮助选材,以及与无损检测相关的声学检测中的声阻抗(密度ρ与声速C的乘积)和射线检测中密度不同的物质对射线能量有不同的吸收能力等等。 3.2熔点

金属由固态转变成液态时的温度,对金属材料的熔炼、热加工有直接影响,并与材料的高温性能有很大关系。 3.3热膨胀性

随着温度变化,材料的体积也发生变化(膨胀或收缩)的现象称为热膨胀,多用线膨胀系数衡量,亦即温度变化1℃时,材料长度的增减量与其0℃时的长度之比。热膨胀性与材料的比热有关。

在实际应用中还要考虑比容材料受温度等外界影响时,单位重量的(材料其容积的增减,即容积与质量之比),特别是对于在高温环境下工作,或者在冷、热交替环境中工作的金属零件,必须考虑其膨胀性能的影响。

3.4磁性

能吸引铁磁性物体的性质即为磁性,它反映在导磁率、磁滞损耗、剩余磁感应强度、矫顽磁力等参数上,从而可以把金属材料分成顺磁与逆磁、软磁与硬磁材料。 3.5电学性能

主要考虑其电导率,在电磁无损检测中对其电阻率和涡流损耗等都有影响。

4、工艺性能

4.1切削加工性能:

反映用切削工具(例如车削、铣削、刨削、磨削等)对金属材料进行切削加工的难易程度。

4.2可锻性:

反映金属材料在压力加工过程中成型的难易程度,例如将材料加热到一定温度时其塑性的高低(表现为塑性变形抗力的大小),允许热压力加工的温度范围大小,热胀冷缩特性以及与显微组织、机械性能有关的临界变形的界限、热变形时金属的流动性、导热性能等。

4.3可铸性:

反应金属材料融化浇铸成为铸件的难易程度,表现为熔化状态时的流动性吸气性、氧化性、熔点,铸件显微组织的均匀性、致密性,以及冷缩率等等。

4.4可焊性:

反映金属材料在局部快速加热,使结合部位迅速熔化或半熔化(需加压),从而使结合部位牢固地结合在一起而成为整体的难易程度,表现为熔点、熔化时的吸气性、氧化性、导热性、热胀冷缩特性、塑性以及与接缝部位和附近用材显微组织的相关性、对机械性能的影响等。

二、金属材料的发展前景

金属制品行业包括结构性金属制品制造、金属工具制造、集装箱及金属包装容器制造、不锈钢及类似日用金属制品制造,船舶及海洋工程制造等。随着社会的进步和科技的发展,金属制品在工业、农业以及人们的生活各个领域的运用越来越广泛,也给社会创造越来越大的价值。

金属制品行业在发展过程中也遇到一些困难,例如技术单一,技术水平偏低,缺乏先进的设备,人才短缺等,制约了金属制品行业的发展。为此,可以采取提高企业技术水平,引进先进技术设备,培养适用人才等提高中国金属制品业的发展。

三、学习体会

老师将同学们分成十组,让每个同学动手制作PPT,上台演讲,使每个人都融入到课堂中。采用学生先讲,老师再补充的方法,让我们更加清楚的认识这门课。

多媒体教学打破了传统的教学格局,极大地调动了教师与学生的双边积极性。因其具有声音、图像和动画等功能,课堂教学气氛活跃,学生容易按老师的教学思维去回答问题,教师也容易按正常的规律从事教学活动,师生双方的潜能都得到应有的发挥,特别是调动了学生的内在学习动力,学生学习兴趣得到培养,同时也有利于素质教育的开展。但需要注意的是,在机械工程材料教学中,不是每堂课都需要在多媒体教室讲解,在确定教学内容时应注意一个问题,就是如何最大限度地发挥多媒体优势,就是说要让多媒体为教学内容雪中送炭,而不能画蛇添足。

教师要运用自己的知识和经验,理解和把握教材,有计划地组织学生走出校园,走进社会,下车间参观锻炼,多接触各种材料,了解金属材料加工工艺,掌握改善材料的力学性能的方法等,让学生在各个实践环节训练,通过这些实训,充分调动学生的主动性,提高学生运用知识和基本技能分析、解决实际问题的能力,开阔学生的视野,掌握更多的操作技能,使他们认识到机械工程材料知识的价值。

机械工程材料是一门实用型学科,其中每个理论都与生产实际密切相关,每种材料也都有特定的应用范围。因此,在教学过程中,教师针对学生的工种和状况,深入挖掘教材内容,将抽象的理论有意识地与生产实践相结合,有目的地设计兴奋点,让课本内容更贴近生产,并通过工作中的实例加以说明。

通过学习机械工程材料及成型技术基础这门课,让我们对金属材料、高分子材料、新型材料陶瓷材料、有色金属有了更深的认识,初步掌握了金属热处理技术、焊接技术、铸造技术、金属材料成型基本原理、金属材料的力学性能。

由于我们组的大课题是金属材料成型基本原理,所以我对这节的印象更加深刻。自己动手找材料制作课件,让我对其中的每个问题都有了深刻理解。如利用机械外力使构件产生与焊接变形方向相反的塑性变形,使两者互相抵消,称为机械矫正法;利用火焰对焊件局部进行加热。高温处的金属材料受热膨胀后,受到构件本身的刚性制约,产生局部的压缩塑性变形,当焊件冷却后发生收缩抵消了焊后在该部位的伸长变形,从而达到矫正目的称为火焰矫正法:常用的金属加工机器有车床、铣床、刨床、冲床、等等。

虽然课程结束了,但是身为机械专业学生的我们应该在接下来的时间里不断补充自己有关机械材料方面的知识。

推荐第10篇:塑料波纹管成型机组及技术

塑料波纹管成型机组及技术

2004-5-15 9:09:00 添加到生意宝

塑料波纹管由于省料、质轻并具有优良的物理化学性能,因此在邮电通讯、城市建筑、农业灌溉和公路排水等领域得到广泛的应用。

目前,世界各国在塑料管材生产中,波纹管占有重要地位,我国的塑料波纹管生产虽然起步较晚,但技术上已达到或接近世界水平。大连塑料研究所从1989年起就对双壁波纹管机组进行了研制,在国内首先研制成功了只有先进水平的成型机组,造价仅是引进设备的四分之一左右,性能达了引进样机水平,具有投资少、见效快、经济效益高的特点,产品性能经检测完全达到引进设备生产的管材水平,填补了国内空白,可以替代引进设备。双壁波纹管成型机组被评为国家级新产品,井获市级科技进步一等奖。

硬质pvc、hdpe等材质的的壁或双壁波纹管,规格从φ3mm到φ160mm(大口径波纹管 正在开发中),仅单壁波纹管机组在全国已转让近百家,双壁波纹管机组也已转让七十多家。 为了使该技术能满足不同生产厂家的要求,我们研制了双螺杆机型及两台单螺杆机型。双螺机型可满足生产硬质pvc双壁波纹管。两台单螺杆机型,适应hdpe双壁波纹管的生产,主特点是设备投资少,生产更易控制。

双壁波纹管外壁呈波纹状,内壁呈平滑状,由于采用了异形断面的力学结构,有良好的承受外部载荷能力;因此具有抗压、较高环刚度等机械性能。管材质轻,其壁厚为平壁管的1/2~1/3,线密度比同规格的平壁管轻40%~50%,节省原材料降低了成本,由于内壁呈平滑状,输送液体压头损失小,节约动能源。该成型机组变换机头和成型模块可以生产不同规格的单壁、双壁波纹管。

* 本信息来源于网上,真实性未经中国塑料模具网证实,仅供您参考!

第11篇:多级注塑成型技术 培训材料

多级注塑成型技术 培训材料.txt女人谨记:一定要吃好玩好睡好喝好。一旦累死了,就别

的女人花咱的钱,住咱的 房,睡咱的老公,泡咱的男朋友,还打咱的娃。★★★★★★★★

★★多级注塑成型技术★★★★★★★★★★

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

【主办单位】 华南注塑技术管理顾问有限公司 (权威、专业、品牌)

【媒体支持】 中国注塑人才网、中国注塑培训网、华南注塑技术顾问网、中国注塑模具网、中国塑料人才网

【培训对象】注塑相关企业副总、注塑部经理/主管、注塑工程师、试模工程师/技术员、注

塑部领班/组长/ 技术员、设计工程师、注塑品质工程师等相关技术管理人员„„

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

◆◆◆◆◆◆课--程--背--景

近代注塑制品形状十分复杂,客户对注塑件质量的要求亦越来越高。注塑件由于流道系

统、浇口形式及制品各部位几何形状不同,在注塑过程中要求在不同位置上能有不同的注射

速度和不同的注射压力等工艺参数的控制——多级注塑程序控制,才能防止和改善注塑件外

观不良现象,提高塑件质量。

现代注塑机均具有多级射胶控制的功能(如:多级熔胶、多级背压、多级注射压力、多

级注射速度及多级保压等),然而,在实际注塑工艺设定中,很多注塑工作者不会正确地使用

多级注塑控制程序,特别是不会寻找多级注塑的位置,盲目性很大,调机时间长、不良品多,原料浪费大,生产成本高。“多级注塑成型技术”高级研修班是专为深入学习多级注塑技术知

识和掌握多级射胶方法,欲快速提升注塑技术/管理水平、提高分析问题/处理问题能力,增

强企业竞争力的人员而开设的。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

◆◆◆◆◆◆课--程--内--容

1、多级注塑控制程序的概述

2、多级注塑控制程序的应用

3、多级熔胶速度的作用与设定方法

4、多级背压的作用与设定方法

5、多级注射压力的作用与设定方法

6、多级注射速度的作用与设定方

7、多级保压的作用与设定方法

8、使用多级注塑控制程序的条件

9、何种情况下需使用多级注塑控制程序

10、什么情况不需使用多级注塑控

制程序

11、多级注塑控制程序对注塑机性能的要求

12、多级注塑控制程序的优点

13、多级注塑控制程序的缺点

14、设定多级注射程序的条件

15、多级注射位置的选择方法

16、计算重量法找位置

17、调试观察法找位置

18、多级注塑工艺的特性

19、各种不良缺陷的多级注射程序分析20、多级注塑工艺条件的设定实例分析

21、几种多级射胶成型的案例

22、怎样利用多级注塑程序控制改善注塑不良问题

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

◆◆◆◆◆◆培--训--流--程

★★★专家讲授●多级注塑●位置确定●科学方法●最新技术●行业前沿●实用知识●案例分析●快速提升★★★

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

◆◆◆◆◆◆讲--师--介--绍

余成根(TONY):1988年毕业于天津科技大学塑料工程专业,中国首席高级注塑培训师,中国注塑协会顾问,具有20年注塑行业实际工作经验,曾到日本制钢研究所和香港塑胶科技中心进修。历任高级注塑工程师、注塑工程经理、注塑部高级经理、注塑企业厂长/副总、多家知名外资企业高级注塑顾问等职,曾服务于香港伟易达集团、美国惠普公司、日本松下电器、德国KIP集团等多家国内外知名企业„„

◆◆◆◆◆◆曾--参--加--培--训--的--部--分--企--业

广州本田公司、惠州中建电讯集团、惠州TCL国际电工集团、顺德惠而浦家电制品厂、珠海威士茂塑胶厂、汕头国际航空实业公司、广州韦士泰医疗器械公司、广州智择电子五金厂、惠阳帝宇工业有限公司、番禺旭东阪田电子厂、深圳欣旺达电子厂、深圳耐普罗塑胶五金厂、深圳创华电子厂、深圳横岗协调电子厂、深圳大和塑料机械厂、深圳亿利达电子机械厂、深圳华丰隆玩具有限公司、佛山远威实业有限公司、佛山智讯电子有限公司、武汉伟豪打火机厂、东莞伟易达集团、东莞怡高集团、美泰玩具厂、荣文灯饰厂、顺建塑胶五金厂、精诚电子有限公司、同达塑胶厂、宏泰塑胶厂、联亚五金塑胶厂、顺里工模塑胶厂、大宇电器塑胶厂、恒钰塑胶厂、台桦塑胶厂、五川音响器材厂、敏利电子厂、劲胜塑胶制品厂、嘉安塑胶制品厂、朗迪电器塑胶厂、乐域塑胶电子厂、益智玩具有限公司、高美电子厂、奇峰五金塑胶厂、联弘玩具有限公司、国莱塑胶模具厂、宏翊塑胶厂、旭品五金塑胶厂、时运达电子厂、友兴塑胶厂、爱科信实业、高艺塑胶厂、塘厦三荣塑胶厂、盛泓五金塑胶厂、高科塑胶厂、弘升五金制品厂、堡盛威塑胶五金厂、德盈电子厂、名翔塑胶五金厂、南部塑胶厂、厦华电子注塑厂、北京富龙塑业有限公司、天津东明电子工业有限公司、佳兴精密注塑有限公司、浙江胜利塑胶有限公司、北京突破雪花注塑有限公司、北京隆轩橡塑有限公司、河北文安友谊塑料厂、山东潍坊嘉华医疗产品有限公司、厦新工程塑胶有限公司、宁波军盈模塑

有限公司、厦门瑞尔特卫浴工业有限公司、苏州明东电器有限公司、苏州广泽汽车饰件有限公司、苏州嘉捷塑料科技有限公司、苏州市万盛实业有限公司、苏州铂联电子制品有限公司、无锡市双赢塑业有限公司、上海亚马特塑胶有限公司、上海德澧塑胶制品有限公司、上海宝山立塑钢有限公司等„„

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

◆◆◆◆◆◆客--户--评--价

1、吴晓华(注塑部经理):我公司有52台日钢注塑机,均有多级注塑程序控制功能。过去由于我们的注塑技术人员不会正确使用多级注塑工艺条件,更不会找各段射胶的位置,长期以来注塑机的多级程序控制功能没有得到充分发挥,80多万元一台的注塑机仅当普通的注塑机使用。当产品结构复杂时,胶件外观不良问题却很难改善,相关技术人员调机水平很低,盲目性大,不良率高、浪费很大。自从去年我们参加华南注塑技术管理顾问公司举办的“多级注塑成型技术”高级研修班之后,使我们厂的注塑技术人员懂得了多级注塑控制程序的设定方法及作用,他们的调机水平得到了明显的提高,注塑件的质量也有大幅度提升,过去注塑中难解决的问题也都迎刃而解了。

2、李华强(注塑部领班):我在注塑行业摸爬滚打已经有9个年头了,几年前我就听说过可用多级注塑工艺条件解决注塑件外观不良问题,但对多级注塑的位置总是找不准,多级注塑程序控制的功能也就无法得到充分发挥。有的注塑技术人员设定注塑工艺条件时,看起来表面上使用了多段射胶方法,但位置却不对,也就仅仅是形式而矣。2005年6月我们公司派了4个人参加了华南公司举办的“多级注塑成型技术”高级研修班后,使我们懂得了多级熔胶、多级背压、多级射胶、多级保压程序控制的作用与设定方法,按照余老师所教的方法去做,使用多段射胶方法对改善注塑件的不良缺陷非常有效,我们的调机技术水平都得到了很大的提高,真的感谢余老师为我们提供了这么好的学习和提升的好机会!

3、杨德平(注塑工程师):多级注塑程序控制是近几年生产的注塑机才有的功能,有的注塑成型技术方面的书中也提到过多级注塑工艺条件的作用,但真正会使用多级注塑控制程序来调机的技术人员不多,有的不知道什么时候需用多级射胶程序,有的不会准确找位置,有的甚至对多级注塑技术有错误的认识。我过去也是一知半解,以为“慢、快、慢”的三段射胶方式就是多段注射的规律。2006年3月我参加了华南公司举办的“多级注塑成型技术”高级研修班后,使我对多级注射控制程序有了更深地理解。收获很大。以前从来没有一个注塑培训机构会对“多级注塑程序控制”研究得如此透彻,余老师不但对多级注塑成型技术研究得很深,而且在培训中通过大量的案例将多级注塑控制程序的作用阐述得淋漓尽致,使我们更易理解与吸收,我认为“多级注塑程序控制”是每一位注塑工作者都应掌握的专业技术知识!

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

联系人:强先生13418378255Fax:(0769)22313969E-mail:inj99@163.com本课程同时接受企业内训服务,有意者联系!

网站支持: http://.cn

http://http://

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

━━━

▓▓▓▓▓【報名回執表】▓▓▓▓▓

我們要參加《多级注塑成型技术》课程學習,請給予留位。

参会企业名称:____________________________参加人数:____________人

联 系 人:______________联系电话:_____________联系传真:_______________ 电子邮箱:________________________________________

参会人一:______________所任职务:_____________移动电话:________________ 参会人二:______________所任职务:_____________移动电话:________________ 参会人三:______________所任职务:_____________移动电话:________________ 参会人四:______________所任职务:_____________移动电话:________________ 参会人五:______________所任职务:_____________移动电话:________________ 参会人六:______________所任职务:_____________移动电话:________________ 付款方式: (请选择打“√”) □

1、现场交费□

2、电汇□

3、转帐□

4、支票备注:

☆ 学员报名参加培训至少应提前三天与本公司联络,以便为您提前做好培训证书及相关准备工作;

☆ 为保证培训效果,请您上课时将手机调为振动或关机状态,以免影响他人听课,感谢您的积极配合;

☆ 我们每个月将举行一个不同课程内容的专题讲座,企业也可要求注塑顾问(专家)上门为企业“量身定做”, 对相关注塑技术/管理人员进行针对性内容培训(企业内训)和注塑技术/管理顾问服务。

☆凡参加本公司专题讲座达3次以上或内训的企业,可免费六个月在中国注塑人才网(Http://.cn)上招聘各类注塑人才(价达3000元以上) 。

第12篇:快速成型技术及应用学习心得

《快速成型技术及应用》学习心得

对于本学期黄老师的《快速成型技术及应用》学习心得,主要从RP技术的应用现状和发展趋势、主要的RP成型工艺分析和RP技术在当代模具制造行业的应用三个方面进行说明:

一、RP技术的应用现状与发展趋势

快速成型(Rapid Prototyping)技术是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。它集成了CAD 技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。

目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。

RP技术虽然有其巨大的优越性,但是也有它的局限性,由于可成型材料有限,零件精度低,表面粗糙度高,原型零件的物理性能较差,成型机的价格较高,运行制作的成本高等,所以在一定程度上成为该技术的推广普及的瓶颈。从目前国内外RP 技术的研究和应用状况来看,快速成型技术的进一步研究和开发的方向主要表现在以下几个方面:

(1)大力改善现行快速成型制作机的制作精度、可靠性和制作能力,提高生产效率,缩短制作周期。尤其是提高成型件的表面质量、力学和物理性能,为进一步进行模具加工和功能试验提供平台。

(2)开发性能更好的快速成型材料。材料的性能既要利于原型加工,又要具有较好的后续加工性能,还要满足对强度和刚度等不同的要求。

(3)提高RP 系统的加工速度和开拓并行制造的工艺方法。目前即使是最快的快速成型机也难以完成象注塑和压铸成型的快速大批量生产。

(4)RPM 与CAD、CAM、CAPP、CAE 以及高精度自动测量、逆向工程的集成一体化。该项技术可以大大提高新产品的第一次投入市场就十分成功的可能性,也可以快速实现反求工程。

(5)研制新的快速成型方法和工艺。除了目前SLA、LOM、SLS、FDM 外,直接金属成型工艺将是以后的发展焦点。

二、几种常见RP工艺

1、FDM,丝状材料选择性熔覆(Fused Deposition Modeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料ABS、聚碳酸酯PC等)加热熔化进而堆积成型方法,简称FDM。

2、SLA,光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,是最早出现的一种快速成型技术。

3、SLS,粉末材料选择性烧结(Selected Laser Sintering)是一种快速原型工艺,简称SLS。粉末材料选择性烧结采用二氧化碳激光器对粉末材料(塑料粉等与粘结剂的混合粉)进行选择性烧结,是一种由离散点一层层堆集成三维实体的快速成型方法。

4、LOM,箔材叠层实体制作(Laminated Object Manufacturing)快速原型技术是薄片材料叠加工艺,简称LOM。箔材叠层实体制作是根据三维CAD模型每个截面的轮廓线,在计算机控制下,发出控制激光切割系统的指令,使切割头作X和Y方向的移动,最后叠加成型。

三、RP技术在模具制造中的应用

传统的模具制造方法可分为两种,一种是借助母模翻制模具,另一种就是用数控机床直接制造模具 。在新产品开发过程中,减少模具制造所需成本和时间对缩短整个产品开发时间及降低成本是最有效的步骤,快速成型技术的一个飞跃就是进入模具制造领域,其潜力所在正是能降低模具制造成本并减少模具开发时间。将快速成型技术引入模具制造过程后的模具开发制造就是快速模具制造。

快速成型技术在模具制造领域的应用主要是用来制作模具设计制造过程中所用的母模,有时也用快速成型技术直接制造模具。因此可以将基于RP的快速模具制造分为两类,即:直接制模法和间接制模法。(这里就不一一阐述了)

利用RP 技术发展快速模具制造技术还存在以下主要问题需要解决或者说需要进一步提高。

(1) 表面质量如何满足模具的要求,否则无法承受如注射成型这样的高压。分层制造法不可避免会产生台阶,斜面时更严重,后处理是目前通用的作法。

(2) 尺寸精度如何满足模具制造的要求,尤其是制造较大模具时,尺寸更不稳定。

(3) 用作母模时的强度,耐热和耐腐蚀性,形状和尺寸的时效问题。

(4) 塑料或树脂类模具的导热性很差,导热差虽然带来了可用较低注射压力的好处,但生产周期太长也必须考虑。

(5) 多数所谓金属模具都需要最后渗铜,这就造成这种金属模具的使用温度不可太高,可能超过500 ℃就不行了。

(6) 使用寿命的进一步延长和使用成本的进一步降低。

(7) 目前所能制造的模具的体积都很小,怎样制造大型模具?

(8) 受不可缺少的后处理工序的限制,目前还不能制造具有很小细节特征的模具,尤其是具有内凹形状的模具。

(9) 目前快速成型方法所能成型的材料种类及其有限,需要开发新型材料。

第13篇:材料成型技术基础复习提纲整理

第一章绪论

1、现代制造过程的分类(质量增加、质量不变、质量减少)。

2、那几种机械制造过程属于质量增加(不变、减少)过程。

(1)质量不变的基本过程主要包括加热、熔化、凝固、铸造、锻压(弹性变形、塑性变形、塑性流动)、浇灌、运输等。

(2)质量减少过程材料的4种基本去除方法:切削过程;磨料切割、喷液切割、热力切割与激光切割、化学腐蚀等;超声波加工、电火花加工和电解加工;落料、冲孔、剪切等金属成形过程。

(3)材料经过渗碳、渗氮、氰化处理、气相沉积、喷涂、电镀、刷镀等表面处理及快速原型制造方法属于质量增加过程。

第二章液态金属材料铸造成形技术过程

1、液态金属冲型能力和流动性的定义及其衡量方法

液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力。

液态金属的充型能力通常用铸件的最小壁厚来表示。 液态金属自身的流动能力称为“流动性”。液态金属流动性用浇注流动性试样的方法来衡量。在生产和科学研究中应用最多的是螺旋形试样。

2、影响液态金属冲型能力的因素(金属性质、铸型性质、浇注条件、铸件结构)

(1)金属的流动性:流动性好的液态金属,充型能力强,易于充满薄而复杂的型腔,有利于金属液中气体、杂质的上浮并排除,有利于对铸件凝固时的收缩进行补缩。

流动性不好的液态金属,充型能力弱,铸件易产生浇不足、冷隔、气孔、夹杂、缩孔、热裂等缺陷。

(2)铸型性质:铸型的蓄热系数b(表示铸型从其中的金属液吸取并储存在本身中热量的能力)愈大,铸型的激冷能力就愈强,金属液于其中保持液态的时间就愈短,充型能力下降。 (3)浇注条件:浇注温度对液态金属的充型能力有决定性的影响。浇注温度越高,充型能力越好。在一定温度范围内,充型能力随浇注温度的提高而直线上升,超过某界限后,由于吸气,氧化严重,充型能力的提高幅度减小。 液态金属在流动方向上所受压力(充型压头)越大,充型能力就越好。但金属液的静压头过大或充型速度过高时,不仅发生喷射和飞溅现象,使金属氧化和产生”铁豆”缺陷,而且型腔中气体来不及排出,反压力增加,造成“浇不足”或“冷隔”缺陷。 浇注系统结构越复杂,流动阻力越大,液态金属充型能力越低。

(4)铸件结构:衡量铸件结构的因素是铸件的折算厚度R(R=铸件体积/铸件散热表面积=V/S)和复杂程度,它们决定着铸型型腔的结构特点。 R大的铸件,则充型能力较高。R越小,则充型能力较弱。

铸件结构复杂,厚薄部分过渡面多,则型腔结构复杂,流动阻力大,充型能力弱。 铸件壁厚相同时,铸型中的垂直壁比水平壁更容易充满。

3、收缩的定义及铸造合金收缩过程(液态、凝固、固态) 铸件在液态、凝固和固态冷却过程中所产生的体积减小现象称为收缩,是液态金属自身的物理性质。

1 液态收缩阶段(Ⅰ) 表现为型腔内液面的降低。

凝固收缩阶段(Ⅱ) 由状态改变和温度下降两部分产生。一般用体收缩率表示。 固态收缩阶段(Ⅲ) 通常表现为铸件外形尺寸的减少,故一般用线收缩率表示。

4、缩孔、缩松的定义,形成条件、产生的基本原因,形成部位及防止方法。液态金属在凝固过程中,由于液态收缩和凝固收缩,往往在铸件最后凝固的部位出现大而集中的孔洞,称缩孔;细小而分散的孔洞称为缩松。

1)金属的成分

结晶温度范围越小的金属,产生缩孔的倾向越大;结晶温度范围越大的金属,产生缩松的倾向越大。

(2)浇注条件和铸型性质

提高浇注温度时,金属的总体积收缩和缩孔倾向大,浇注速度很慢缩孔容积减少, 铸型材料对铸件冷却速度影响很大。

缩松:金属型

(1)针对金属的收缩和凝固特点制定正确的技术方法控制铸件的凝固方向使之符合顺序凝固方式或同时凝固方式;

(2)合理确定内浇口位置及浇注方法;

(3)合理应用冒口、冷铁和补贴等技术措施。

5、铸造应力的定义及分类,产生的缺陷(热裂、冷裂、变形),防止和减少的措施。铸件在凝固和随后的冷却过程中,收缩受到阻碍而引起的内应力,称为铸造应力。 分类

按形成的原因不同铸造应力分为热应力、相变应力和机械阻碍应力。 按应力存在的状况可分为临时应力和残余应力

临时应力是暂时的,当引起应力的原因消除以后,应力随之消失。 残余应力是长期存在的,当引起应力的原因消除后,仍存在铸件中。

2 当铸造应力的总合超过金属的强度极限时,铸件便产生裂纹。按裂纹形成的温度范围可分为热裂和冷裂。

热裂是在凝固末期高温下形成的裂纹。裂纹沿晶粒边界产生和发展,外观形状曲折而不规则,表面与空气接触而被氧化并呈氧化色。

冷裂是铸件在低温时形成的裂纹。冷裂纹常穿过晶粒,外形规则,呈圆滑曲线或直线状,表面光滑而具有金属光泽或显微氧化色。

防止和减小铸造应力的措施 :

在零件能满足工作条件的前提下,选据弹性模量和收缩系数小的材料; 采用同时凝固方式;

合理设置浇冒口,缓慢冷却,以减小铸件各部分温差; 采用退让性好的型、芯砂。

若铸件已存在残余应力,可采用人工时效、自然时效或振动时效等方法消除。

6、金属的吸气性及金属吸收气体的过程,主要气体(H

2、N

2、O2)

金属在熔炼过程中溶解气体;在浇注过程中因浇包未烘干、铸型浇注系统设计不当、铸型透气性差以及浇注速度控制不当、或型腔内气体不能及时排出,都会使气体进入金属液,增加金属中气体的含量。这就构成了金属的吸气性。(氢、氮、氧)。 (1)气体分子撞击到金属液表面;

(2)在高温金属液表面上气体分于离解为原子状态;

(3)气体原子根据与金属元素之间的亲和力大小,以物理吸附方式或化学吸附方式吸附在金属表面;

(4)气体原子扩散进入金属液内部。

7、偏析、宏观偏析、微观偏析、正偏析、逆偏析的定义及其消除方法。

铸件凝固后,截面上不同部位,以至晶粒内部,产生化学成分不均匀的现象,称为偏析。 微观偏析是指微小(晶粒)尺寸范围内各部分的化学成分不均匀现象。

在铸件较大尺寸范围内化学成分不均匀的现象叫宏观偏析。主要包括正偏析和逆偏析。 正偏析:k>1,杂质的分布从外部到中心逐渐增多; 逆偏析:k

8、铸件可能出现那几种气孔(析出性、反应性、侵入性)及其定义

(1)析出性气孔 当金属液冷却速度较快时,由于铸件凝固,气泡来不及排出而保留在铸件中形成的气孔,称为析出性气孔。 (2)反应性气孔 金属液与铸型、熔渣之间相互作用或金属液内部某些组元发生化学反应产生的气体所形成的气孔,则称为反应性气孔。

(3)侵入性气孔 砂型铸造时,由于砂型透气率低或排气通道不畅,砂型受热产生的气体,在界面上超过一定临界值时,气体就会侵入金属液而未上浮排出,则产生侵入性气孔。

9、熔炼的分类(按合金和熔炼特点)及熔炼的基本要求

根据所熔炼合金的特点,熔炼大概可分为铸铁熔炼、铸钢熔炼和有色金属熔炼。

3 根据熔炉的特点又可分为冲天炉熔炼、电弧炉熔炼、感应电炉熔炼和坩锅熔炼等。 依据炉衬的种类,熔化技术可分为酸性或碱性。

10、浇注系统的组成及主要功能 浇口杯、直浇道、横浇道、内浇道 浇注系统的主要功能

连接铸型与浇包,导入液态金属; 挡渣及排气;

调节铸型与铸件各部分的温度分布,控制铸件的凝固顺序;

保证液态金属在最合适的时间范围内充满铸型,不使金属过度氧化,有足够的压力头,并保证金属液面在铸型型腔内有必要的上升速度。

11、铸件冒口的定义、作用及设计必须满足的基本要求(P51)

铸型中能储存一定金属液(同铸件相连接在一起的液态金属熔池)补偿铸件收缩,以防止产生缩孔和缩松缺陷的专门技术“空腔”,被称为冒口。 冒口的作用:

主要是“补缩铸件”、集渣和通、排气。 设置冒口必须满足的基本条件:

凝固时间应大于或等于铸件(或铸件上被补缩部分)的凝固时间; 有足够的金属液补充铸件(或铸件上被补缩部分)的收缩; 与铸件上被补缩部位之间必须存在补缩通道。

12、冷铁的作用

放入铸型内,用以加快铸件某一部分的冷却速度,调节铸件的凝固顺序,与冒口相配合,可扩大冒口的有效补缩距离。

13、常用的机器造型和制芯方法有哪些?

震实造型、微震实造型、高压造型、抛砂造型、气冲造型等。

14、液态金属的凝固过程,顺序凝固、同时凝固的定义

15、砂型铸造和特种铸造的技术特点(P52) 砂型铸造的特点是:

适应性广,技术灵活性大,不受零件的形状、大小、复杂程度及金属合金种类的限制。 生产准备较简单。

生产的铸件其尺寸精度较差及表面粗极度高;铸件的内部品质也较低; 在生产一些特殊零件(如管件、薄壁件)时,技术经济指标较低。 特种铸造的技术特点:

铸件的尺寸精度较高,表面粗糙度低。

在生产一些结构特殊的铸件时,具有较高的技术经济指标, 不用砂或少用砂,降低了材料消耗,改善了劳动条件; 使生产过程易于实现机械化、自动化。

但特种铸造适应性差,生产准备工作量大,需要复杂的技术装备。 因此,特种铸造技术(陶瓷型铸造除外)一般适用于大批大量生产。

16、常用的特种铸造方法有哪些?其基本原理和特点是什么? 熔模铸造、金属型铸造、压力铸造、离心铸造、低压铸造等。

17、何谓金属的铸造性能,铸造性能不好会引起哪些铸造缺陷?

铸造部分复习题

4

1、影响液态金属冲型能力的因素有哪些?

2、简述砂型铸造和特种铸造的技术特点。(15)

3、简述铸件上冒口的作用和冒口设计必须满足的基本原则。冒口的作用:

主要是“补缩铸件”、集渣和通、排气。 设置冒口必须满足的基本条件:

凝固时间应大于或等于铸件(或铸件上被补缩部分)的凝固时间; 有足够的金属液补充铸件(或铸件上被补缩部分)的收缩; 与铸件上被补缩部位之间必须存在补缩通道。

4、铸造成形的浇注系统由哪几部分组成,其功能是什么?(10)

5、熔炼铸造合金应满足的主要要求有哪些?

熔炼出符合材质性能要求的金属液,而且化学成分的波动范围应尽量小; 熔化并过热金属所需的高温; 有充足和适时的金属液供应; 低的能耗和熔炼费用;

噪声和排放的污染物严格控制在法定的范围内。

6、试比较灰铸铁、铸造碳钢和铸造铝合金的铸造性能特点,哪种金属的铸造性能好?哪种金属的铸造性能差?为什么?(P46)

第三章 复习及复习题

一、名词解释:

1、金属塑性变形、加工硬化

金属塑性变形是利用金属材料塑性变形规律,施加外力使之产生塑性变形而获得所需形状、尺寸和力学性能的零件或毛坯的加工工艺。

塑性:材料在外力作用下,产生永久残余变形而不断裂的能力

加工硬化:在塑型变形过程中,随着变形程度的增加,金属的强度、硬度提高,塑型、韧性下降,这一现象称为加工硬。(工程材料) 金属在室温下塑性变形,由于内部晶粒沿变形最大方向伸长并转动、晶格扭曲畸变以及晶内、晶间产生碎晶的综合影响,增加了进一步滑移变形的阻力,从而引起金属的强度、硬度上升,塑性、韧性下降的现象称为加工硬化。亦称为冷作硬化。

2、自由锻: 自由锻造(又称自由锻)是利用冲击力或压力使金属材料在上下两个砧铁之间或锤头与砧铁之间产生变形,从而获得所需形状、尺寸和力学性能的锻件的成形过程。 模锻:模型锻造包括模锻和镦锻,是将加热或不加热的坯料置于锻模模膛内,然后施加冲击力或压力使坯料发生塑性变形而获得锻件的成形过程。 胎模锻:胎模锻造是在自由锻造设备上使用不固定在设备上的各种称为胎模的单膛模具,将已加热的坯料用自由锻方法预锻成接近锻件形状,然后用胎模终锻成形的锻造方法。

3、落料、冲孔

落料和冲孔又统称为冲裁。落料和冲孔是使坯料按封闭轮廓分离。落料是被分离的部分为所需要的工件,而留下的周边部分是废料;冲孔则相反。

4、固态金属的冷变形和热变形

冷变形是指金属在进行塑性变形时的温度低于该金属的再结晶温度。 热变形是指金属在进行塑性变形时的温度高于该金属的再结晶温度。

5、板料分离和成形

5 分离过程是使坯料一部分相对于另一部分产生分离而得到工件或者料坯。 成形过程是使坯料发生塑性变形而成一定形状和尺寸的工件。

6、金属的可锻性

金属塑性变形的能力又称为金属的可锻性,它指金属材料在塑性成形加工时获得优质毛坯或零件的难易程度。

三、简答题

1、简述自由锻成形过程的流程及绘制自由锻件图要考虑的主要因素。

计算坯料质量和尺寸、下料零件图→绘制锻件图 →确定工序、加热温度、设备等→加热坯料、锻打→检验→锻件

敷料、加工余量、锻件公差

2、在金属的模锻过程中,影响金属充填模腔的因素有哪些?

①金属的塑性和变形抗力。显然,塑性高、变形抗力低的金属较易充满模膛。 ②金属模锻时的温度。金属的温度高,则其塑性好、抗力低,易于充满模膛。

③飞边槽的形状和位置。飞边槽部宽度与高度之比(b/h)及槽部高度h是主要因素。(b/h)越大,h越小,则金属在飞边流动阻力越大。强迫充填作用越大,但变形抗力也增大。 ④锻件的形状和尺寸。具有空心、薄壁或凸起部分的锻件难于锻造。锻件尺寸越大,形状越复杂,则越难锻造。

⑤设备的工作速度。一般而言,工作速度较大的设备其充填性较好。 ⑥充填模膛方式。镦粗比挤压易充型。 ⑦其他如锻模有无润滑、有无预热等。

3、请阐述金属在模锻模膛内的变形过程及特点。(1)充型阶段

在最初的几次锻击时,金属在外力的作用下发生塑性变形,坯料高度减小,水平尺寸增大,并有部分金属压入模膛深处。这一阶段直到金属与模膛侧壁接触达到飞边槽桥口为止。 特点:模锻所需的变形力不大。 (2)形成飞边和充满阶段

继续锻造时,由于金属充满模膛圆角和深处的阻力较大,金属向阻力较小的飞边槽内流动,形成飞边。此时,模锻所需的变形力开始增大。随后,金属流入飞边槽的阻力因飞边变冷而急速增大,当这个阻力一旦大于金属充满模膛圆角和深处的阻力时,金属便改向模膛圆角和深处流动,直到模膛各个角落都被充满为止。

这一阶段的特点是飞边进行强迫充填,变形力迅速增大。 锻足阶段

如果坯料的形状、体积及飞边槽的尺寸等工艺参数都设计得恰当, 当整个模膛被充满时,也正好锻到锻件所需高度。但是,由于坯料体积总是不够准确且往往都偏多,或者飞边槽阻力偏大,导致模膛已经充满,但上、下模还未合拢,需进一步锻足。

这一阶段的特点是变形仅发生在分模面附近区域,以便向飞边槽挤出多余的金属。

4、简述模锻技术过程中确定分模面位置的原则。

①要保证模锻件易于从模膛中取出。故通常分模面选在模锻件最大截面上。 ②所选定的分模面应能使模膛的深度最浅。这样有利于金属充满模膛,便于锻件的取出和锻模的制造。

③选定的分模面应能使上下两模沿分模面的模膛轮廓一致,这样在安装锻模和生产中发现错模现象时,便于及时调整锻模位置。

6 ④分模面最好是平面,且上下锻模的模膛深度尽可能一致。便于锻模制造。 ⑤所选分模面尽可能使锻件上所加的敷料最少。这样既可提高材料的利用率,又减少了切削加工的工作量。

5、落料和冲孔用凹、凸模刃口尺寸是如何确定的?

设计落料时,凹模刃口尺寸即为落料件尺寸,然后用缩小凸模刃口尺寸来保证间隙值。 设计冲孔模时,凸模刃口尺寸为孔的尺寸,然后用扩大凹模刃口尺寸来保证间隙值。 为保证零件的尺寸要求,提高模具的使用寿命,落料时取凹模刃口的尺寸应靠近落料件公差范围的最小尺寸;而冲孔时则取凸模刃口的尺寸靠近孔的公差范围内的最大尺寸。

第四章 粉末压制和常用复合材料成形过程

练习题

一、名词解释: 粉末冶金:粉末压制(这里主要指粉末冶金)是用金属粉末(或者金属和非金属粉末的混合物)做原料,经压制成形后烧结而制造各种类型的零件和产品的方法。

电解法:电解法是采用金属盐的水溶液电解析出或熔盐电解析出金属颗粒或海绵状金属块,再用机械法进行粉碎。 雾化法金属粉末制备方法:雾化法是将熔化的金属液通过喷射气流(空气或惰性气体)、水蒸汽或水的机械力和急冷作用使金属熔液雾化,而得到金属粉末。

三、简答

1、硬质合金的分类情况及其主要用途是什么? 钨钴类(YG) 主要组成为碳化钨(WC)和钴(Co)。常用牌号有YG

3、YG

6、YG8等。

钨钴类硬质合金有较好的强度和韧度,适宜制作切削脆性材料的刀具。如切削铸铁、脆性有色合金、电木等。且含钴愈高,强度和韧度愈好,而硬度、耐磨性降低,因此,含钴量较多的牌号一般多用作粗加工,而含钴量较少的牌号多用于作精加工。 钨钴钛类(YT) 主要组成为碳化钨、碳化钛(TiC)和钴。常用牌号有YT

5、YT

10、YTl5等。

钨钴钛类硬质合金含有比碳化钨更硬的碳化钛,因而硬度高,热硬性也较好,加工钢材时刀具表面会形成一层氧化钛薄膜,使切屑不易粘附,故适宜制作切削高韧度钢材的刀具。同样含钴量较高(如YT5.含钴9%)的牌号用作粗加工。 钨钽类(YW) 主要组成为碳化钨、碳化钛、碳化钽(TaC)和钴。其特点是抗弯强度高。牌号主要有YWl(84%WC、6%TiC、4%TaC、6%Co),YW2(82%WC、6%TiC、4%TaC、8%Co)两种。 这类硬质合金制作的刀具用于加工不锈钢、耐热钢、高锰钢等难加工的材料。

2、请简要介绍粉末压制结构零件设计的原则

一、压制件应能顺利地从压模中取出

二、应避免压制件出现窄尖部分

窄尖部分会出现装粉不足,使压制成形因难。窄尖部分还会影响压模的强度和寿命。

三、零件的壁厚应尽量均匀,台肩尽可能的少,高(长)宽(直径)比不超过2.5(厚壁零件不超过4) 零件的高度太高,压制方向上的台肩多,各部分壁厚相差过大等,都会造成压制件的密度分布不均匀。

四、制品的尺寸精度及表面粗糙度

7 压制烧结零件的尺寸精度,应以能满足零件的技术要求为准;既不要盲目地追求过高的尺寸精度,这样不仅大大增加生产成本;又不要不必要地降低尺寸精度,从而抹煞粉末压制的技术特点。

制品的表面粗糙度取决压模的表面粗糙度。烧结后一般在10~15μm,若想进一步降低表面粗糙度,则需要进行复压校形或精压。

3、请简要介绍金属粉末的制备方法

1、矿物还原法制取粉末

矿物还原法是金属矿石在一定冶金条件下被还原后,得到一定形状和大小的金属料,然后将金属料经粉碎等处理以获得粉末。

矿物还原法主要适用于铁粉生产,也能生产钴、钼、钙、难熔的金属化合物粉末(如碳化物、硼化物、硅化物粉末)等。

2、电解法

电解法是采用金属盐的水溶液电解析出或熔盐电解析出金属颗粒或海绵状金属块,再用机械法进行粉碎。

电解法生产的金属品种多,纯度高,粉末颗粒呈树枝状或针状,其压制性和烧结性都较好。

3、雾化法制取粉末

雾化法是将熔化的金属液通过喷射气流(空气或惰性气体)、水蒸汽或水的机械力和急冷作用使金属熔液雾化,而得到金属粉末。

由于雾化法制得的粉末纯度较高,又可合金化,粉末有其特点,且产量高、成本较低,故其应用发展很快。可用来生产铁、钢、铅、铝、锌、铜及其合金等的粉末。

4、机械粉碎法

机械破碎法中最常用的是钢球或硬质合金球对金属块或粒原料进行球磨。

适宜于制备一些脆性的金属粉末,或者经过脆性化处理的金属粉末(如经过氢化处理变脆的钛粉)。

第五章 固态材料的连接过程 练习题

一、名词解释: 焊接:将分离的金属用局部加热或加压等手段,借助于金属内部原子的结合与扩散作用牢固地连接起来,形成永久性接头的过程称为焊接。

熔化焊接:利用热源局部加热的方法,将两工件接合处加热到熔化状态,形成共同的熔池,凝固冷却后,使分离的工件牢固结合起来的焊接称为熔化焊。 压力焊接:在焊接过程中,对焊件施加一定压力(加热或不加热),以完成焊接的方法。 钎焊:钎焊是采用熔点比母材低的金属作钎料,将焊件加热到高于钎料熔点、低于母材熔点的温度,使钎料填充接头间隙,与母材产生相互扩散,冷却后实现连接焊件的方法。

摩擦焊:摩擦焊是利用工件接触面摩擦产生的热量为热源,将工件端面加热到塑性状态,然后在压力下使金属连接在一起的焊接方法。

电阻焊:电阻焊是利用电流通过焊件时产生的电阻热,作为热源,加热焊件,在压力下进行焊接的。

直流正接和直流反接:直流正接:工件接阳极,焊条接阴极。直流反接:工件接阴极,焊条接阳极。

三、简答题

1、焊接用焊条药皮的作用是什么,由哪几部分组成? 药皮的作用

A 改焊接工艺性能:易引弧、稳弧,减小飞溅,使焊缝成形美观;

8 B 机械保护作用:气体、熔渣隔离空气,保护熔液和熔池金属;

C 冶金处理作用:药皮中的某些元素可起到渗合金、脱氧、脱硫、去氢作用。 药皮的组成

主要有稳弧剂、造气剂、造渣剂、脱氧剂、合金剂、粘结剂、稀渣剂、增塑剂等。主要原料有矿石、铁合金、有机物和化工产品等四类。

2、简述碱性焊条和酸性焊条的性能和用途。熔渣以酸性氧化物为主的焊条,称为酸性焊条。

酸性焊条的氧化性强,焊接时具有优良的焊接性能,如稳弧性好,脱渣力强,飞溅小,焊缝成形美观等,对铁锈、油污和水分等容易导致气孔的有害物质敏感性较低。 熔渣以碱性氧化物为主的焊条,称为碱性焊条。

碱性焊条有较强的脱氧、去氧、除硫和抗裂纹的能力,焊缝力学性能好,但焊接技术性能不如酸性焊条,如引弧较困难,电弧稳定性较差等,一般要求用直流电源。而且药皮熔点较高,还应采用直流反接法。

3、手工电弧焊用焊条的选用原则是什么?

首先根据焊件化学成分、力学性能、抗裂性、耐蚀性及高温性能等要求,选用相应的焊条种类。再考虑焊接结构形状、受力情况、焊接设备条件和焊条售价来选定具体型号。 ①根据母材的化学成分和力学性能

若焊件为结构钢时,则焊条的选用应满足焊缝和母材“等强度”,且成分相近的焊条; 异种钢焊接时,应按其中强度较低的钢材选用焊条;

若焊件为特殊钢,如不锈钢、耐热钢等时,一般根据母材的化学成分类型按“等成分原则”选用与母材成分类型相同的焊条。

若母材中碳、琉、磷含且较高,则选用抗裂性能好的碱性焊条。 ②根据焊件的工作条件与结构特点

对于承受交变载荷、冲击载荷的焊接结构,或者形状复杂、厚度大,刚性大的焊件,应选用碱性低氢型焊条。

③根据焊接设备、施工条件和焊接技术性能

无法清理或在焊件坡口处有较多油污、铁锈、水分等赃物时,应选用酸性焊条。 在保证焊缝品质的前提下,应尽量选用成本低、劳动条件好的焊条。 无特殊要求时应尽量选用焊接技术性能好的酸性焊条。

4、什么是焊接热影响区?它由哪几部分组成,分别对焊接接头有何影响? 在电弧热的作用下,焊缝两侧处于固态的母材发生组织或性能变化的区域,称为焊接热影响区。

热影响区可分为过热区、正火区和部分相变区。 过热区的塑性和冲击韧度很低。焊接刚度大的结构或碳的质量分数较高的易淬火钢材时,易在此区产生裂纹。

一般情况下,焊接热影响区内的正火区的力学性能高于未经热处理的母材金属。 已相变组织和未相变组织在冷却后晶粒大小不均匀对力学性能有不利影响。

5、焊接应力产生的根本原因是什么?减少和消除焊接应力的措施有哪些?

焊接过程中对焊件进行了局部的不均匀的加热,是产生生焊接应力和变形的根本原因。 (1)选择合理的焊接顺序 (2)焊前预热

焊前将焊件预热到350-400℃,然后再进行焊接。 预热可使焊缝部分金属和周围金属的温差减小,焊后又可比较均匀地同时冷却收缩,因此可显著减少焊接应力,同时可减少焊接变形。

9 (3)加热“减应区”

在焊接结构上选择合适的部位加热后再焊接,可大大减少焊接应力。 (4)焊后热处理

去应力退火过程可以消除焊接应力。

即将工件均匀加热到600-650℃,保温一定时间,然后缓慢冷却。整体高温回火消除焊接应力的效果最好,一般可将80%—90%以上的残余应力消除掉。

6、简述金属材料焊接性的概念。指在一定的焊接工艺条件下,获得优质焊接接头的难易程度。即金属材料对焊接加工的适应性称为金属材料的焊接性。

7、简述埋弧自动焊的特点及应用。

①生产率高 生产率比手工电弧焊高5-10倍。 ②焊接品质高而且稳定 ③节省金属材料 ④劳动条件好

但是埋弧自动焊的灵活性差,只能焊接长而规则的水平焊缝,不能焊短的、不规则焊缝和空间焊缝,也不能焊薄的工件。焊接过程中,无法观察焊缝成形情况,因而对坡口的加工、清理和接头的装配要求较高。埋弧自动焊设备较复杂,价格高,投资大。 应用

埋弧自动焊通常用于碳钢、低合金钢、不锈钢和耐热钢等中厚板(6-60mm)结构的长焊缝及直径大于250mm环缝的平焊,生产批量越大,经济效果越佳。

8、铸铁焊补的主要困难及采取的主要措施有哪些?

焊接接头易产生白口组织,硬度很高,焊后很难进行机械加工。 焊接接头易产生裂纹,铸铁焊补时,其危害性比白口组织大。 在焊缝易出现气孔。

10

第14篇:材料成型与加工技术(DOC)

第一章 绪 论

制造业是提高国家工业生产率、经济增长、国家安全及生活质量的基础,是国家综合实力的重要标志。现如今我国制造业面临巨大挑战,因而加强材料成形加工技术与科学基础研究,大力采用先进制造技术,对国民经济的发展具有重要意义。

材料成形加工技术与科学既是制造业的重要组成部分,又是材料科学与工程的四要素之一,对国民经济的发展及国防力量的增强均有重要作用。“新一代材料精确成形加工技术”与“多学科多尺度模拟仿真”是现代两个重要学科研究前沿领域。高新技术材料的出现,将加速发展以“精确成形”及“短流程”为代表的材料加工工艺,包括:全新的成形加工方法与工艺,及传统成形加工方法的改进与工序综合。“模拟仿真”是产品计算机集成制造、敏捷制造的主要内容,是实现制造业信息化的先进方法。并行工程已成为产品及相关制造过程集成设计的系统方法,以计算机模拟仿真与虚拟现实技术为手段的虚拟制造设计将是先进制造技术的重要支撑环境。网络化、智能化是现代产品与工艺过程设计的趋势,绿色制造是现代材料加工技术的进一步发展方向。

面对市场经济、参与全球竞争,必须加强材料成形加工科学与技术的基础和应用研究。只有使用先进的材料加工技术,才能获得高质量产品的结构和性能,这些高性能的先进材料包括传统材料和新材料。发展材料成形加工技术对我国制造业以高新技术生产高附加值的优质零部件有积极作用,可扩大材料及制造范围、提高生产率、降低产品成本、增强企业国际竞争能力。

制造业在过去的几年中发生了巨大变化,而现代高科技及新材料的出现将导致材料成形加工技术的进一步发展与变革,出现全新的成形加工方法与工艺,传统加工方法不断改进并走向工艺综合,材料成形加工技术则逐渐综合化、多样化、柔性化、多科学化。

第二章 现代材料成形加工技术与科学

2.1现代材料成形加工技术的作用与地位

我国已是制造大国,仅次于美、日、德,位居世界第四位。材料成形加工行业则是制造业的重要组成部分,材料成形加工技术也是先进制造技术的重要内容。铸造、锻造及焊接等材料加工技术是国民经济可持续发展的主体技术。目前,在汽车行业中汽车重量的65%以上仍由钢铁、铝及镁合金等材料通过铸造、锻压、焊接等加工方法而成形。材料成形加工技术与科学又是材料科学与工程的四要素之一,它不仅赋予零部件以形状,而且给予零部件以最终性能及使用特性。

制造业在过去的几年中发生了巨大的变化,这种变化还会延续。高速发展的工业技术要求材料加工产品精密化、轻量化、集成化;国际竞争更加激烈的市场要求产品性能高、成本低、周期短;日益恶化的环境要求材料加工原料与能源消耗低、污染少;另外材料成形本身制造好、成品率高。为了生产高精度、高质量的产品,材料正由单一的传统型向复合型、多功能型发展;材料加工技术逐渐综合化、多样化、柔性化、多科学化。

面对市场经济、参与全球竞争,必须加强材料成形加工科学与技术的基础和应用研究。只有使用新近的材料加工技术才能获得高质量产品的结构和性能,这些高性能的先进材料包括传统材料和新材料。发展材料成形加工技术对我国制造业已高新技术生产高附加值的优质零部件有积极作用。

2.2材料成形加工技术的发展趋势

美国在“新一代制造计划”中指出,未来的制造模式将是批量小、质量高、成本低、交货期短、生产柔性、环境友好;未来的制造企业要掌握十大关键技术,其中包括快速产品与工艺开发系统、新一代制造工艺及装备及模拟与仿真三项关键技术。其中新一代工艺包括精确成形加工制造或称净终成形加工工艺。净终成形加工工艺要求材料成形加工制造向更轻、更薄、更强、更韧及成本低、周期短、质量高的方向发展。

轻量化、精确化、高效化将是未来材料成形加工技术的重要发展方向。近年来,随着汽车工业的迅速发展,对通过降低产品的自重以降低能源消耗 和减少污染(包括汽车尾气和废旧塑料)提出了更迫切的要求,轻质、高质量的绿色环保材料将成为人们的首选。镁合金就是被世界各国材料界看好的最具有开发和应用发展前途的金属材料。

镁合金压铸件广泛应用于交通工业(汽车、摩托车及飞机零件等)、IT行业(手机、笔记本等)、小型家电行业(摄像机、照相机及其它电子产品外壳等)。汽车离合器和变速箱壳体采用镁合金压铸件比铝合金重量分别减轻2.6kg和2.5kg。同时,压铸镁铝合金产品在体育运动(自行车架与踏板、滑雪板等)、手工工具(链锯、岩钻等)、国防建设(轻型武器、步兵装备)等领域亦有十分广阔的应用前景。

2.3材料成形加工过程的建模与仿真

随着计算机技术的发展,技术材料科学已成为一门新兴的交叉学科,成为材料研究的重要手段,是除实验和理论外解决材料科学中实际问题的第三个重要研究方法。它可以比理论和实验做得更深刻、更全面、更细致,可以进行一些理论和实验暂时还做不到的研究。因此,基于知识的材料成形工艺模拟仿真是材料科学与工程的前沿领域及研究热点,而高性能、高保真和高效率则是模拟仿真的努力目标。根据美国科学研究院工程技术委员会的测算,模拟仿真可提高产品质量5~15倍,增加材料出品率25%,降低工程技术成本13%~30%,降低人工成本5%~20%,增加投入设备的利用率30%~60%,缩短产品设计和试制周期30%~60%,增加分析问题广度和深度的能力3~3.5倍等。

2.4材料的快速成形与虚拟制造

我国制造业的主要问题之一是缺乏创新产品的开发能力,因而缺乏国际市场竞争能力。随着全球化市场的激烈竞争,加快产品开发速度已成为竞争的重要手段之一。制造业要满足日益变化的用户要求,必须有较强的灵活性,以最快的速度提供高质量产品。

虚拟制造是CAD、CAM和CAPP等软件的集成技术,其关键是建立制造过程的计算模型,虚拟仿真制造过程。虚拟制造以并行方式进行产品设计、加工和装配,对各单元采用分布管理,而且不受时间、空间限制。虚拟制造的基础是虚拟现实技术。所谓“虚拟现实”技术是利用计算机和外观设备,生成与真实环境一致的三维虚拟环境,使用户通过辅助设备从不同的“角度”和“视点”与环境中的“现实”交互。与智能制造、虚拟工厂、网络化制造集成,材料加工过程建模与仿真将成为制造业新产品过程设计的非常有效的工具。

第三章 新一代材料成形加工

3.1材料成形加工技术发展特征

材料成形加工技术在现代发展的过程中,形成“精密”、“优质”、“快速”、“复合”、“绿色”、“信息化”的特征。

1.材料成形加工技术的“精密”特征:成形精度向净成形的方向发展 材料成形加工技术的重要特征是精密化,以制造技术而论,从尺度上看,精密制造技术已经跨越了微米级技术,进入了亚微米和纳米技术领域。材料成形加工技术也在朝着精密化的方向发展,表现为零件成形的尺寸精度正在从近净成形向净成形,即近无余量成形方向发展。“毛坯”与“零件”的界限越来越小。

2.材料成形加工技术的“优质”特征:成形质量向近无缺陷、“零”缺陷的方向发展

如果说净成形技术主要反映的是成形加工技术的尺寸与形状精密的特征,反映了成形加工保证尺寸及形状的精密程度,那么,反映成形加工优质特征的则是近无缺陷、“零”缺陷成形加工技术。这个“缺陷”是指不致引起早期失效的临界缺陷的概念。采取的主要措施有:采用先进工艺、净化熔融金属、增大合金组织的致密度,为得到健全的铸件、锻件奠定基础;采用模拟技术、优化工艺技术,实现一次成形及试模成功,保证质量;加强工艺过程监控及无损检测,及时发现超标零件;通过零件安全可靠性能研究及评估,确定临界缺陷量值等。

3.材料成形加工技术的“快速”特征:成形过程向快速方向发展

为满足现代消费观念的变革以及市场的剧烈竞争化,“客户化、小批量、快速交货”的要求不断增加,需要材料成形加工技术的快速化。

成形加工技术的快速特征表现在各种新型高效成形工艺不断涌现,星星铸造、锻造、焊接方法都从不同角度提高生产效率。

3.2新一代材料成形加工技术

制造技术可分为加工制造和成形制造(以液态铸造成形、固态塑性成形及连接成形等为代表)技术,其中成形制造不仅赋予零件以形状,而且决定了零件的组成。

3.2.1精确成形加工技术

近年来出现了很多新的精确成形加工制造技术。在轿车工业中还有很多材料精确成形新工艺,如用精确锻造成形技术生产凸轮轴等零件,液压胀形技术,半固态成形及三维挤压发等。摩擦压力焊接技术近来也备受人们关注。

以挤压铸造及半固态铸造为代表的精确成形技术由于熔体在压力下充型、凝固,从而使零件具有好的表面及内部质量。半固态铸造是一种生产结构复杂、近净成形、高品质铸件的材料半固态加工技术。半固态铸造铝合金零件在汽车上的应用其区别于压力铸造和锻压的主要特征是:材料处于半固态时在较高压力(约200MPa)下充型和凝固。材料在压力作用下凝固可形成细小的球状晶粒组织。

3.2.2快速原型制造技术

随着全球化及市场的激烈竞争,加快产品开发速度已成为竞争的重要手段之一。制造业要满足日益变化的用户需求,制造技术必须具有较强的灵活性,能够以小批量甚至单批量生产迎合市场。快速原型制造技术以离散和堆积原理为基础和特征,将零件的电子模型按一定方式离散成为可加工离散面、离散线和离散点,然后采用多种手段将这些离散的面、线和点堆积形成零件的整体形状。有人因该技术高度的柔性而称之为“自由成形制造”。近年来快速原型制造已发展为快速模具制造及快速制造,这些技术能大大缩短产品的设计开发周期,解决单件或小批零件的制造问题。

3.3新一代产品制造设计的研究

未来智能制造公司需要一系列核心智能,以便在集成设计、制造和商业服务系统内进行智能商务运作。这一系列的智能核心即可预测性、可生产性和廉价性、污染防治、产品与工艺性能。

研究这些特点已使集成设计、制造和服务成为一个具有竞争力的系统学科。如果将这种集成工程系统理解成为一种科学,就可以将其归为已经成熟的分析方法,然后就可以确定基本参数及如何测量它们,从而可以预测期行为。下面是在材料加工和新一代产品制造设计中将建模与仿真用作智能核心的基本要点:

1.数字产品和工艺建模的可预测性

随着具有竞争力的缩减产品发展与实现周期的蓬勃发展,在产品与工艺合成中的所有决策需要精度的建模与仿真工艺,以使物理基础的或行为基础的设计属性生效。在动力学、热力学、理学、材料和行为系统中有效运用建模工具是未来数字制造的先决条件。这些模型和知识要在网络和协作环境下共享,最新的SGI(美国图形工作站生产厂商)工作站可以在数分钟至数小时内解决极为复杂的工程问题。制造商可以使用高度工程化的仿真模型来帮助供货商改变模型设计和运送近于零缺陷的铸件给消费者,这样会尽量减少返工和缺陷。 2.材料的可生产性和廉价性

廉价的制造材料对制造业特别是航空业一直是一个挑战。随着对环境和性能的规范和限制越来越多,各公司正在寻找更好的超级合金高温材料和类似网状的工艺技术,以降低原材料和制造运作过程的成本。现在,研究机构中的多数研究工具和工艺模型对公司在制造过程中预测并验证材料属性是远远不够的。我们必须将着眼点从尺寸精确性扩展到材料性能,以便获得对工艺、机器和零件的品质的全面了解。这将引导我们开创集材料、制造、物理和计算学等交叉学科的研究工作,以推进我们对制造学的了解。

3.绿色生产和工艺的污染防治

我们需要新的规范使传感器和工艺控制这种技术更好的整合,以便更少的发展和安装成本提供更高的能源效率并降低污染。绿色制造系统应改进以使工厂监控工艺参数,并直接、精确和快速的获得真实的工艺信息。另外,需要可代替的化学基础的涂层技术来影响化学自由制造工艺,还需要新型的传感器通过化学手段监控和控制腐蚀环境。正在出现的技术,诸如微电子机械基础的工艺传感器和无线电通信,需要发展和工程化以满足这些挑战性的需求。

4.产品与工艺性能的先进维护技术

服务和维护对于保持产品和工艺的质量及客户的满意度是非常重要的。确定系统失效原因的难点归结为几种因素,包括系统复杂性、不确定性和缺乏足够的纠错工具。当前,许多组织工业正实行的服务和维护就是基于响应的方法。组织我们解决这些问题的基本原因是对制造机器和设备每天的情况了解不足。我们只是不知道如何定量预测零件和机器的性能退化。我们缺乏有效地预测模型和工具,它们可以告诉我们给定工艺参数的具体值时会有什么情况发生。我们要进行研究,以了解产品和机器故障生产的原因,开发智能和可重复配置这些目标,需要智能软件和网络设备来提供预先维护能力,诸如性能退化测量、故障修复、自维护和远程诊断。这些特点允许制造和加工工业能发展预先维护策略,以保证产品和工艺性能,并最终消除不必要的系统瘫痪。

第4章 绿色再制造与材料成形加工的可持

续发展

在当今全球经济发展的同时,对自然资源的任意开发利用带来了全球的生态破坏、资源短缺、环境污染等重大问题。其中,机电产品制造业是最大的资源使用者,也是最大的环境污染资源之一。通过研究再制造工程理论和技术,可以为废旧产品的科学利用提供依据,指导规范当前的再制造市场。

再制造工程是以产品全寿命周期设计和管理为指导,以优质、高效、节能、环保为目标,以先进技术和产业化市场为手段,来恢复或改造废旧产品的一系列技术措施或工程活动的总称。 通过再制造的研究,可形成闭环的产品物质及信息流系统,实现由产品的开环处理和材料资源的闭环回收,发展到产品闭环使用的高级阶段,实现高级资源物质流的最优化循环。

4.1再制造过程的设计基础

针对失效的产品进行再制造,首先要对其进行再制造设计,再制造的设计基础包括产品的失效机理及寿命预测、再制造性的评价等内容。

4.1.1产品失效机理及寿命预测

产品服役的环境行为及失效机理研究是实施再制造工程重要的基础理论依据。从宏观和微观上研究零部件在复杂的环境中失效的机理和损伤的规律。主要研究复杂环境中多因素非线性耦合作用下的零部件失效机理,包括腐蚀介质与力学因素联合作用下的零件损伤机理,温度场与应力场耦合作用下的零部件损伤行为,多轴载荷作用下零部件的疲劳破坏行为,以及汽液固多相流环境中零部件的腐蚀、冲蚀、穴蚀交互损伤规律。

产品寿命预测与剩余寿命评估方法建立在零部件失效分析的基础上,应用力学理论建立失效行为的数学模型,并与加速试验结果相结合,以建立产品寿命的预测评估系统,评估新品、再制造产品的寿命及产品的剩余寿命。

4.1.2产品再制造性的评价

废旧产品的再制造性是决定其能否进行再制造的前提,是再制造基础理论研究中的首要问题。再制造性是指将技术、经济和环境等因素综合分析后,废旧产品所具有的通过维修或改造后恢复或超过原产品性能的能力。

4.2再制造材料成形加工关键技术

废旧产品经过再制造论证后,要实施再制造必须依赖于先进的材料成形加工技术。

4.2.1复合表面工程技术

零件的失效多起源于表面,因此表面工程技术是再制造过程中的核心技术。表面过程,是经表面预处理后,通过表面涂覆、表面改性或多种表面工程技术复合处理,改变固体金属表面或非金属表面的形态、化学成分、组织结构和应力状态等,已获得所需要表面性能的系统工程。表面工程是由多个学科交叉、综合而发展起来的新兴学科,它以“表面”为研究核心,在有关学科理论的基础上,根据零件表面的失效机制,以应用各种表面工程技术及其复合为特色,逐步形成了与其他学科密切相关的表面工程基础理论。表面工程的最大优势是能够以多种方法制备出优于本体材料性能的表面功能薄层,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射等性能。表面工程的基本特征是综合、交叉、复合、优化。复合表面工程是先进表面工程的重要基础内容。复合表面工程主要包括多种表面技术的复合和多种表面材料的复合两种形式。国外称之为第二代表面工程新技术。

1.多种表面技术的复合

多种表面技术的复合能够形成新的涂层体系,并建立表面工程新领域。单一的表面技术由于其固有的局限性,往往不能满足日益苛刻的工况条件的要求。综合运用多种表面技术的复合可以通过最佳协同效应获得了“1+1>2”的效果,解决了一系列高新技术发展中特殊的工程技术难题。

多种表面技术的复合主要研究内容包括:

⑴ 研究可产生协同效应的多种技术之间的复合和设计;表面复合涂层在恶劣工况下表面或界面之间的协同效应机理。

⑵ 研究表征功能梯度材料(FGM)性能与组成的梯度变化,应用计算机逆向设计对FGM覆层的组成和结构进行优化;开发热喷涂、电刷镀、气相沉积等工艺制备FGM覆层的技术;研究金属、金属间化合物、陶瓷等FGM涂层性能。

⑶ 应用物理气相沉积、化学气相沉积和高能束辅助沉积在再制造毛坯上形成超硬膜。研究真空膜层成膜界面行为与膜层性能关系;形核及生长动力学;在晶格错配度较大条件基体强度与超硬膜结合强度的关系;复合膜组元之间的交互作用。

2.多种表面材料的复合

多种表面材料形成的复合涂层不但具有单一结构涂层所具有的性能,还因复合材料的不同而获得特殊性能或具有多功能的性能涂层,复合涂层的研究和应用日益增多。由各种材料复合获得的复合涂层种类主要有:金属基陶瓷复合涂层、陶瓷复合涂层、梯度功能复合涂层等。

4.2.2纳米表面工程技术

纳米表面工程是以纳米材料和其他低维非平衡材料为基础,通过特定的加工技术或手段,对固体表面进行强化、改性、超精细加工或赋予表面新功能的系统工程。纳米涂层及纳米表面自修复材料和技术是以纳米材料为基础,通过特定的工艺手段,对固体的表面进行强化、改性,或者赋予表面新功能,或者对损伤的表面进行自修复。例如:

⑴ 纳米颗粒复合电镀刷技术 ⑵ 纳米颗粒复合原位动态自修复技术 ⑶ 纳米材料热喷涂技术 ⑷ 金属表面纳米晶化技术

纳米表面工程的主要技术基础包括:

① 纳米涂层的制备技术的基础研究,特别是研究纳米材料在介质中的分散和稳定等关键工艺;纳米涂层的高强度、高韧性及其他特殊优异性能;纳米涂层对热疲劳及高温磨损等苛刻条件下的微裂纹萌生、扩展和损伤抑制机理;纳米涂层抗氧化性和热稳定性的机理等。

② 研究非晶复合纳米晶涂层形成的机理与影响因素,包括材料表面纳米结构和非晶纳米晶复合涂层结构和体相的物理化学现象;涂层显微组织的形成与演化规律、缺陷与热应力的形成机理、界面结合情况等。研究非平衡条件下低维材料的结构与行为以及宏观与微观的一体化,包括“尺度问题”和“表面、界面问题”,为开发纳米电刷镀技术、纳米热喷涂技术、纳米气相沉积等及其复合技术提供技术基础。

③ 纳米原位动态减摩自修复技术的基础研究。在不停机、不解体的状况下,应用摩擦化学理论,利用纳米颗粒的特性在摩擦微损伤表面原位动态形成自修复膜层的方法及材料。研究内容包括:纳米结构的润滑膜、自修复薄膜等的生长机理和服役特性;纳米润滑添加剂对摩擦表面的强化和对初期磨损表面的原位动态自修复等机制;纳米添加剂的组成、形态、结构、反映活性等与损伤动态自修复功能的关系规律,开发与摩擦表面结合良好、具有优良抗磨损和承载能力的纳米磨损动态自修复技术及摩擦表面原位强化技术。

4.2.3特殊环境下的应急再制造技术

我国有大量的设备服役在苛刻的环境条件下,如在野外环境下石油、天然气设备;水电、公路铁路施工设备等;在严重快速磨损的高原沙漠地区,在高温、高湿、高烟雾海洋环境下的严重腐蚀或磨损等。特殊环境下的装备应急再制造关键技术以恢复服役性能为重点,对再制造的时间、空间、标准、技术条件等有特殊要求,具有现场性、应急性、易噪性等特点。研究内容主要包括:

1.应急快速维修技术

高科技条件下的局部战争及生产线协同运行等作业方式缩短了损伤装备修理的时间和空间,因此应急快速维修的地位和作用也变得更为重要。采用先进技术快速修复损伤的装备,使其迅速恢复战斗力和生产力,是高科技条件下的作战与生产对应急维修技术的要求,也是装备再制造的重要研究方向。主要技术基础:

⑴ 研究军用装备的战伤特点及装备突发故障规律,建立应急维修技术专家系统。

⑵ 开发适应于高低温、高负荷、强辐射等苛刻条件下使用的耐磨、防腐化学粘涂材料(复合型胶粘剂、纳米胶粘剂、特种功能胶粘剂);研究粘结粘涂层的衰变性能;研究快速固化机理和技术,如紫外线固化、微波固化技术等;重点开发适用于战伤及突发损伤的粘接、冷焊、扣合、堵漏等应急快速抢修技术。

⑶ 研究提高部队作战和野外施工作业应急机动保障能力的关键技术,开发通用化、小型化、标准化、智能化、数字化的靠前抢修配套工具和仪器,开发多种现场抢修车及方舱等。

2.再制造毛坯快速成形技术

再制造毛坯快速成形技术,是利用原有废旧的零件作为再制造零件毛坯原料,根据离散和堆积成形原理,利用CAD零件模型所确定的几何信息,采用积分原理和先进熔覆技术进行金属的熔融堆积,快速成形。主要技术基础:

⑴ 建立产品结构、零部件及表面涂层体系的再制造计算机辅助工程系统(RCAE),研究零件受损检测和几何特征定位,开发再制造毛坯表面三维几何参量测试及再制造建模系统。

⑵ 研究适宜快速成形的高熔点材料,解决金属直接快速成形的致密性、成形材料与基体的结合强度、成形材料间的内聚强度等问题。

结 论

本文指出我国制造业的基础共性技术领域材料成形加工技术与科学的发展方向,以推动该领域的发展和进步。

新一代制造工艺及装备、建模与仿真及快速产品与工艺开发系统是面向现代的三项关键先进制造技术。轻量化、精确化、高效化将是新一代成形加工技术的重要发展方向,材料成形加工向更轻、更薄、更精、更强、更韧、质量高、周期短及成本低的方向发展。

在新一代成形加工技术与材料成形加工的发展中不断面临的环保、资源、市场竞争等问题上,绿色再制造又成为了成形加工技术的进一步发展趋势。绿色再制造材料成形加工关键技术基础的研究目标和内容涉及材料学科和机械学科的前沿,符合废品资源化和我国可持续发展战略的原则和内容,其中许多技术基础的研究内容优又是根据我国废旧产品再制造的需求提出的,具有较强的学科创新性、前瞻性以及广阔的应用与发展前景。

参考文献

12

朱高峰主编.全球化时代的中国制造.北京:社会科学文献出版社,2003

柳百成,李敏贤,吴俊郊等.国家自然科学资金优先资助领域战略研究报告—

—先进制造技术基础.北京:高等教育出版社,1998, 3456789

石力开.新材料的发展趋势及其在我国的发展状况, 1996,

师昌绪.高技术新材料的现状与展望.机械工程材料,1994,

柳百成,荆涛等.铸造工程的模拟仿真及质量控制.北京:机械工业出版社2001,

中国机械工程学会.“九五”机械工业科学技术重大进展,2001

中国环境污染状况备忘录.世界环境,1998

徐滨士,马世宁,刘世参等.21世纪的再制造工程.中国机械工程,2000

周尧和.21世纪需要绿色集约化铸造,1998

成都理工大学

材料成型与加工技术

姓名:陈康

学号:2015050207 专业:机械工程及其自动化

院系:核技术与自动化学院

2016年1月5日

第15篇:材料先进成型技术答案整理

材料先进成型技术

1从凝固学角度,结合实例谈谈细化合金晶粒的主要措施并说明细化原因。

晶粒细化措施:

凡是促进形核、抑制晶体长大的措施均可细化晶粒。 提高冷速:冷速高,则过冷度大,形核率增加。 进行变质处理:促进非均匀形核 控制加热温度(过热度):过热导致非均匀形核速率下降,但可以提高过冷度使形核率增加,两者竞争,寻求最佳过热度。

进行熔体振动:机械搅拌、电场、磁场、对流和超声波作用等。 利用成分过冷效应,制造形核带,产生大量的等轴晶粒。

晶粒细化实例:

变质处理:向金属液体中加入一些细小的形核剂(又称为孕育剂或变质剂),使它在金属液中形成大量分散的人工制造的非自发晶核,从而获得细小的铸造晶粒,达到提高材料性能的目的。(铸造铝硅合金的变质处理以细化晶粒) 【铝硅合金具有良好的力学性能和铸造性能,在工业中应用广泛,如用作汽车发动机缸体、活塞等材料。随着硅含量增加,Al+Si的共晶体增多;当硅含量超过13%时,合金中还析出粗大的多角形板状初晶硅。由于硅相质脆且以粗大片状存在,在硅相尖端和棱角部位容易引起应力集中,从而严重降低其力学性能。通过相铝硅合金中加入锶、钠及稀土等元素对其进行变质处理以改变硅相形态,以提高合金的性能。】

外场作用细化合金晶粒:(1)超声波作用:超声波增大形核数量,提高形核率;超声波对熔体的搅拌作用使得大量碎小枝晶形成,提高晶核数量;超声波的导入加大了过冷度,有利于晶体细化。(2)电磁场作用:电磁振荡凝固细晶技术、脉冲电磁凝固细晶技术(磁压强引起的熔体振荡导致了凝固组织的细化)(3)熔体过热处理细化合金晶粒:熔体过热可消除其固相夹杂和不可逆类固形原子团簇,控制形核过程。提高过热温度和延长保温时间均可消除熔体中的异质核心,使得熔体达到结构和成分的均匀化,消除组织遗传性,从而得到性能良好的组织。过热温度和保温时间不能过高、过长,否则难熔的异质相溶解,减小了形核数,不利于得到细晶组织。(4)利用成分过冷效应细化合金晶粒(5)快速凝固细化合金晶粒:通过提高冷却速率使液态金属获得大的过冷度,增大形核速率。该方法可达到很好的细化效果,甚至达到微晶或纳米晶,但生产试件尺寸小,控制困难,晶粒内应力大。

2实现单向凝固的条件有哪些?列举定向凝固铸造的主要方法。选取一种定向凝固方法谈谈其原理和优缺点。

实现单向凝固条件: (1)处于成分过冷状态 成分过冷判据”方程

随GL/R的减少,凝固组织形态的变化为:平面状→胞状→枝状→等轴晶 (2) 严格保证单向散热,使成正的温度梯度 (3) 提高G/R比值

(4) 提高液体的纯净度,减小金属液体的形核能力 (5) 避免液态金属的对流、搅拌和振动

定向凝固铸造的主要方法: 发热铸型法------早期研究用,已淘汰 炉内单向凝固法:功率下降法; 快速凝固法------最为常用; 液态金属冷却法------实验室和小批量生产阶段.

高速凝固法: 原理:为提高定向凝固速率,发展了HRS法。在感应加热体下部安装一隔热挡板,并在水冷结晶器下有一个型壳抽出机构,使浇注后型壳随同水冷结晶器逐渐下移。隔热挡板挡住了感应体的辐射热,使型壳内未凝固区处于热区的高温下,而型壳移出部分的凝固区处于冷区,热流则由水冷结晶器通过传导传出,一部分热流则通过辐射向四周散热,从而使合金凝固界面前沿的温度梯度G值和凝固生长速率尺值比PD法提高数倍。铸件质量和生产效率均显著提高,适合制造较长的定向叶片。

优点:

 可以更好地控制冷凝曲线,很好的控制凝固生长速率R,显著改善了生产的稳定性和可重复性;  缩短周期,提高生产效率

 凝固过程中温度梯度G和凝固生长速率R保持相对稳定,明显提高了铸件组织在垂直和水平方向上的均匀性;

 凝固过程基本不受铸件尺寸影响,铸件尺寸受工艺的限制较小

3连续铸造的主要工艺方法有哪些?产品有何特点?并结合实例谈谈其在生产实际中的应用。

连续铸造的主要工艺方法为:

(1)立式连续铸造:连续铸造工艺过程中铸件沿垂直于地平面方向运动的称为立式连铸; (2) 卧式连续铸造:铸件沿水平方向运动的连续铸造工艺过程称为卧式连铸或水平连铸;

(3)立弯式连续铸造:立式与卧式连铸方法相结合,产生了立弯式连铸工艺,钢液首先经过立式连铸工艺成形后,经专门的轧辊机构使其在高温时沿一定的回转半径呈弯曲最后呈水平方向运动,因而达到完全连续铸造。

连续铸造产品特点:

(1)晶粒细化、组织细密;(2)较小偏析倾向,成分分布较均匀;(3)力学性能得到提高;(4)铸件的表面较平整,易于实行后续加工。(5)但是连铸件冷却速度快,也会造成较大的内部应力,控制不当会造成裂纹和硬度分布的不均匀。

连续铸造实际生产应用:

(1)作为铸件直接用于各种场合或作为毛坯用于机械加工制造各种机械零件,如连续铸造铸铁管和水平连续铸造铸铁型材。

(2)用于冶金工业中作为金属轧制成材用得铸锭及坯料,如连续铸造铜、铝锭及立弯式连续铸造的钢坯。后者产量很大,例如一台立弯式钢坯连铸机的年产量可达几十万至上百万吨

4挤压铸造的主要工艺方法有哪些?产品有何特点?并结合实例谈谈其在生产实际中的应用。

挤压铸造也称“液态模锻”,是对充入铸型的液态或半固态金属施以高的机械压力,并使其在高压下凝固成形的一种铸造技术 挤压铸造分为:直接挤压,间接挤压。

其产品特点为:(1)由于铸件在较高的压力下凝固,不易产生气孔、缩孔和缩松等内部缺陷,组织致密性好,可以进行固溶处理;(2)挤压铸造件组织得到细化;(3)铸件的力学性能比金属型重力铸造件有显著提高;(4)铸件尺寸精度较高,表面粗糙度值较低;(5)铸件工艺出品率高; (6)工艺适应性强,可用于非铁合金、钢铁金属的各种铸造合金和部分变形合金,还适于制取金属基复合材料件。(7)产品生产效率较高,便于自动化;(8) 不适合生产结构复杂件或薄件。 挤压铸造应用:

挤压铸造以铸件内部质量高、表面光洁度好、生产效率高、对铸造工人的技术要求低等优点在我国受到越来越高的重视。与其它铸造方式相比,挤压铸造工艺的另一大优势是可使用变形合金进行生产,为生产高力学性能的挤压铸件取代锻件提供有利条件。

适用范围:适于生产各种对力学性能要求高,致密性好的厚壁铸件。如汽车受力件(铝合金活塞、汽车轮毂)汽车耐压件(压缩机涡轮)及散热片、电机壳体、轴套等零件。

5半固态铸造的基本工艺方法有哪些?产品有何特点?并结合实例谈谈其在生产实际中的应用。

半固态铸造主要分两大类:流变铸造和触变铸造。 流变铸造:利用剧烈搅拌等方法制备出预定固相分数的半固态金属浆料并对半固态金属浆料进行保温,将该半固态金属浆料直接送往成形机进行铸造或锻造成形的工艺。可分为流变压铸、流变锻造等。

触变铸造:首先利用剧烈搅拌等方法制备出球状晶的半固态金属浆料,将该半固态金属浆料进一步凝固成锭坯或坯料,再按需要将金属坯料分切成一定大小,把这种切分的同态坯料重新加热至固液两相区,然后利用机械搬运将该半固态坯料送往成形机(如压铸机、锻造机等)进行铸造或锻造成形。根据成形机的种类,可分为触变压铸、触变锻造等。 半固态铸造产品特点:

(1)机械性能比常规铸造和压铸高;

(2) 含有一定固相比例的半固态金属在搬运过程时更多呈固态特性,易于搬运;而在压铸时更多呈液态特性,流动性好,易于充型,产品密实无缺陷。 (3) 含有一定球状晶粒的半固态浆料凝固后,无缩孔,无偏析,因此性能更均匀。 (4) 半固态浆料温度低,对模具的热影响小,提高模具寿命

(5) 由于半固态浆料的温度低,可以加入低熔点的增强材料(纤维等),为复合材料的廉价生产开辟了途径。

半固态铸造技术的应用:半固态铸造金属主要是铝、镁合金,这些合金最成功的应用主要集中在汽车领域,如半固态模锻铝合金制动总泵体、挂架、汽缸头、轮载、压缩机活塞等。铝合金半固态加工技术(触变成形)已经成熟并进入规模生产,主要应用于汽车、电器、航空航天领域,与铝合金半固态成形比较,镁合金的半固态成形技术发展较晚,成熟的技术只有Thixomolding技术。

6论述超塑性的种类、实现条件、力学特征以及超塑性在材料成形中的意义。

超塑性:金属和合金在特定组织结构和变形温度速度条件下,可以呈现异常高的塑性,伸长率可达数100%甚至达1000%以上,变形抗力也很小,这种现象称为超塑性。

超塑性种类:组织(细晶)超塑性(包括共晶型与共析型合金双相组织超塑性)、相变超塑性、其他超塑性( 短暂超塑性、相变诱发超塑性、高应变速率超塑性、电致超塑性) 超塑性实现条件:(1)内部组织条件:晶粒尺寸小;晶粒形貌等轴;显微组织多相。(2)外部变形条件:变形温度较高;变形温度恒定;应变速率较低。 实现组织超塑性的条件: 1:材料具有均匀的、细小的等轴晶粒,晶粒尺寸通常

2:变形温度T>0.5Tm(Tm为材料熔点),并且在变形时温度保持恒定; 3:应变速率έ=10-4~10-5/s,要比材料常规拉伸试验时应变速率至少低一个数量级。

相变超塑性实现条件:内部组织条件:发生固态相变;外部变形条件:循环加热冷却。

【超塑性的宏观变形特征:大变形;低变形抗力;无缩颈;易成形。】 超塑性力学特征:

1为了描述超塑性的力学特征,应力与应变速率的关系式:=Kέm

2材料在超塑变形过程中,会在低应力下呈现很好的稳态流变能力,基本上没有应变硬化现象,拉伸试样经过长时间的均匀变形,其截面不断变小而最终断裂,无明显颈缩。

超塑性在材料成形中的意义:

将材料的塑性成形置于材料的超塑状态下进行的超塑成形技术,与传统的塑性加工技术相比,其优势十分明显:

(1) 成形力小,可以降低成形设备吨位,节约能源,延长成形模具使用寿命,降低对模具材料的要求。

(2) 塑性好,充型能力强,可成形出复杂形状制件,可将多道次的塑性成形改为一次成形,可将多工序的组合件或镶嵌件改为整体结构一次成型。 (3) 可提高成形件的精度,可成形出精细的尖角、沟槽、凸台,成形件表面光洁,轮廓清晰。

(4) 可提高材料利用率,实现少无切削的近终加工。

(5) 某些不能进行常规塑性加工的所谓脆性材料、加工性能差的难加工材料,在其超塑状态下可以进行塑性加工。

(6) 可以将塑料制品、玻璃制品的某些加工方法用于金属制品的加工。 (7) 由于超塑状态下的成形过程是较低速度和应力下的稳态塑性流变过程,故成形后残余应力很小,不会产生裂纹、弹性回复和加工业,成形件尺寸稳定;超塑性成形后材料仍能保持等轴细晶组织,无各向异性,不会出现制耳等不均匀塑性流变引起的缺陷。常规塑性加工时极易出现的各种缺陷在超塑成形时大多不会出现。

【应用:

(1)材料在超塑状态下具有很好的塑性加工成形性和焊合性,因而超塑性在塑性加工和固态连接中均有很好的应用前景。

(2)如果塑性成形制件不希望成形后的组织因具有常规塑性变形的组织特征而影响使用性能,那么采用超塑成形替代常规塑性成形具有明显的技术优势 (3)超塑变形过程中的高密度晶体缺陷及亚结构,在变形结束时立即通过淬火将其固定下来,以提高材料的强韧性,这种技术思想在双相钢和双相钛合金的超塑性研究中已得到试验证实

(4)材料在超塑状态下极好的可塑性、易焊合性、原子易扩散性、以晶界行为为主的变形机制及其组织特性等等,可以为含有超塑技术因素的组合或复合技术的构建提供很大的自由度

应用:

1、将超塑性引入到传统塑性加工中,可开发出超塑性挤压、超塑性模锻、超塑性轧制、超塑性胀形等,还有超塑性扩散焊接、超塑性烧结、超塑性模锻等】

7锻造成形技术的种类有哪些?各有何优缺点?模锻工艺流程中的关键工序有哪些?如何保证锻件的质量?

分类:

按成形工具分类:自由锻、模锻、胎模锻造、特种锻造 自由锻:通常把采用简单通用的工具(如平砧、型砧)使坯料或铸锭产生塑性变形,从而得到所需的形状尺寸和良好组织性能锻件的塑性加工方法称为自由锻造。 优点:自由锻造方便、灵活,工装简单,工件变形抗力小,广泛应用于试制、修理、单件小批生产。对大型关键锻件的生产,自由锻造是主要的塑性加工技术 缺点;生产率低,工人劳动强度大,金属损耗大,自由锻件的精度及复杂程度不高

模锻:在锻压机械的动力作用下,坯料在锻模型腔中被迫塑性流动成形,从而形成比自由锻造质量更高的锻件(根据模具的终锻型槽结构不同,模锻可分为开式模锻、合闭式模锻。根据所用的设备不同,模锻可分为锤上模锻、热模锻压机上模锻和水压机模锻。) 优点: 生产效率高

锻件形状复杂,尺寸精度高,粗糙度低 锻件的机械加工余量少,材料利用率高 流线分布更合理,提高工件使用寿命 操作简便,劳动强度小 锻件批量大时,其成本较低 缺点: 设备投资大

生产准备周期长

锻模成本高,使用寿命短 工艺灵活性不如自由锻

胎模锻造:是在自由锻设备上采用不与上、下砧相接的活动模具成型的方法。进一步发展又形成了模锻工艺,因此其特点介于两者之间

优缺点:胎膜锻造与自由锻造相比,具有能够提高锻件质量、节省原材料、提高生产率等优点;与模锻相比,具有不用贵重模锻设备、锻模加工简单等优点。其缺点是锻件的精度稍差、劳动强度大、生产效率低、胎膜使用寿命短等。

按成形温度分类:热锻、温锻、冷锻 热锻:在再结晶温度以上进行的塑性变形;

优点:减少金属的变形抗力;改变钢锭的铸态结构;提高钢的塑性。 温锻:在室温以上完全再结晶温度以下进行的塑性变形 优点:减少锻压力;精度较高 冷锻:在室温时进行塑性变形

优点:没有温度波动和氧化作用,锻件精度高而表面光洁;提高锻件的强度和硬度;限于比较小的机器零件和低碳钢及有色金属材料。 模锻工艺流程

1、备料工序(按工序要求将原材料切割成单件毛坯,除锈,防氧化,和润滑处理)

2、加热工序(按变形的加热温度和生产节拍,加热原坯料和中间坯料)

3、变形工序:制坯+模锻、预锻+终锻(根据锻件类型和选用的模锻设备确定制坯工序和模锻工序,其中模锻工序包括预锻和终锻)。预锻的作用是使制坯后的坯料进一步变形,以保证终锻是金属充满型槽,已得到无折叠、裂纹或其他缺陷的优质锻件,同时有助于减少终锻型槽磨损,提高使用寿命。

4、锻后工序

5、检验工序(检验项目:几何形状尺寸、表面质量、金相组织和性能)。其中最重要的是变形工序。

8结合具体实例分析自由锻和模锻的优缺点。 通常把采用简单通用的工具(如平砧、型砧)使坯料或铸锭产生塑性变形,从而得到所需的形状尺寸和良好组织性能锻件的塑性加工方法称为自由锻造。优点:自由锻造方便、灵活,工装简单,工件变形抗力小,广泛应用于试制、修理、单件小批生产。对大型关键锻件的生产,自由锻造是主要的塑性加工技术。缺点;生产率低,工人劳动强度大,金属损耗大,自由锻件的精度及复杂程度不高。 在锻压机械的动力作用下,坯料在锻模型腔中被迫塑性流动成形,从而形成比自由锻造质量更高的锻件。1.优点:生产效率高;锻件形状复杂,尺寸精度高,粗糙度低;锻件的机械加工余量少,材料利用率高;流线分布更合理,提高工件使用寿命;操作简便,劳动强度小;锻件批量大时,其成本较低。缺点:设备投资大;生产准备周期长;锻模成本高,使用寿命短;工艺灵活性不如自由锻。

9焊接方法的种类有哪些?选取其中一种焊接方法谈谈其原理、优缺点及其应用。

焊接方法主要有:熔化焊、钎焊、固相焊接。熔化焊按照热源的不同分为:气焊(氧-乙炔焊)、电弧焊(手工电弧焊、埋弧焊、钨极气体保护焊、钨极惰性气体保护焊、熔化极气体保护焊、熔化极惰性气体保护焊、等离子焊)、高能束焊(电子束焊、激光焊)。 钨极气体保护焊:工艺原理是通过建立在非消耗性电极—钨电极和金属焊件之间的电弧来加热并熔化焊丝和部分待焊母材来进行焊接的一种工艺。因保护气体的不同分为钨极惰性气体保护焊和钨极活性气体保护焊。

钨极气体保护焊的工艺优缺点:优点:电弧稳定,可以分别控制送丝速度和焊接电流,以在焊缝尺寸不变的情况下,改变熔池稀释率和热输入,可以实现自熔焊,可以焊接活泼的有色金属。缺点:焊接电流不能过大,设备暂载率低,熔覆率、生产效率相对较低。 直流正接适用材料:除铝镁外的金属;直流反接一般不采用;交流适用于铝、镁、铝青铜等。 氧-乙炔焰焊: 原理:利用可燃气体和助燃气体(氧气)混合点燃后产生的高温火焰来熔化工件的待焊部位来进行焊接的工艺,叫做气焊。当可燃气体为乙炔时,为氧-乙炔焊。

优缺点:

优点:设备简单、轻便、且价格低廉,保养和维修非常方便。

缺点:能量密度低,焊接速度慢,热输入大,易产生较大热影响区、构件变形严重。会污染一些活泼金属的焊缝,因此不被推荐用于焊接钛合金、铝合金等。

电阻焊:

原理:工件通电后,在被焊构件间和与电极表面间接触区域的接触电阻作用下被加热,发生局部熔化后,接触电阻减弱甚至消失(在闪光对焊过程中由于反复分离而被加速)。此后,其主要生热作用的是决定于电流密度的体积加热。

优点:效率高,变形小,节省材料,劳动条件好。

缺点:一次投资大,耗电量大,用于板料焊接只能用于较薄的板材

应用:多用于厚度较薄材料的搭接;各种直径线材、管材、棒材的对接。

10 焊接缺陷有哪些类型?产生原因是什么?在生产实际中如何控制?

焊接缺陷:焊瘤、夹渣、裂纹、气孔、咬边、未焊透、偏析等。 产生原因:

焊瘤产生的原因:焊条熔化太快、电弧过长、电流过大、焊速太慢、运条不当。夹渣的原因:施焊中焊条未搅拌熔池、焊件不洁、电流过小、分层焊时,各层渣未去除。

裂纹的原因:焊件中含碳、硫、磷高;焊接结构设计不合理;焊接程序不当;焊缝冷却太快;存在咬边、气泡、夹渣、未焊透等。

气孔的原因:焊件不洁、焊条潮湿、电弧过长、焊速太快、电流过大、焊件含碳量高。

咬边的原因:电流过大、焊条角度不对、运条不当、电弧过长。

未焊透的原因:装配间隙过小、坡口开得太小、钝边太大、电流过大、焊速过快、焊条未对准焊缝、焊件不洁。 【

1) 咬边:在沿着焊趾的母材部位烧熔形成的沟槽或凹陷,称为咬边。焊接电流太大,以及运条速度不当所造成。

2) 未焊透:焊接时,焊接接头根部未完全熔透的现象,称为未焊透。坡口角度过小、间隙过小或钝边过大;焊接电流太小;焊接速度过快;电弧电压偏低;焊(或焊丝)可焊性不好;清根不彻底。

3) 气孔:焊接时,熔池中的气体在凝固时未能逸出而残留在焊缝中所形成的空穴,称为气孔。其气体可能是熔池从外界吸收的,也可能是焊接冶金过程中反应生成的。主要原因母材或填充金属表面有锈、油污等,焊条及焊剂未烘干会增加气孔量,因为锈、油污及焊条药皮、焊剂中的水分在高温下分解为气体,增加了高温金属中气体的含量。焊接线能量过小,熔池冷却速度大,不利于气体逸出。焊缝金属脱氧不足也会增加氧气孔。 4) 夹渣:焊接熔渣残留在焊缝中。原因可能是熔池温度低(电流小),液态金属黏度大,焊接速度大,凝固时熔渣来不及浮出;运条不当,熔渣和铁水分不清;坡口形状不规则,坡口太窄,不利于熔渣上浮;多层焊时熔渣清理不干净。 5) 未熔合:熔焊时,焊道与母材之间或焊道与焊道之间,未完全熔化结合的部分,称为未熔合。主要是焊接线能量太低,电弧偏吹,坡口侧壁有锈垢及污物,层间清渣不彻底等。

6) 烧穿:在焊接过程中,熔化金属自坡口背面流出,形成穿孔的缺陷,称为烧穿。焊接电流过大,焊接速度太慢,装配间隙过大或钝边太薄等。 7) 焊瘤:焊接过程中熔化金属流淌到焊缝之外未熔化的母材上所形成的金属瘤,称为焊瘤。操作不熟练和运条不当,埋弧焊工艺参数选择不合适等。】

生产实际中焊接缺点的控制:

1) 焊接电流:焊接电流大小选择恰当与否直接影响到焊接最终质量。焊接电流过大,可以提高生产率,并使熔深增加 ,但易出现咬边 焊瘤等缺陷,并增大气孔倾向尤其在立焊时熔池难以控制,易出现焊瘤,弧长增加,就会产生咬边焊接电流过小,溶深减小,易出现未焊透融合不良夹渣脱节等缺陷。

2) 焊速:焊接速度是表征焊接生产效率的主要参数。合理选择焊接速度对保证焊接质量极其重要。焊速过快,使熔池温度不够,易造成未焊透未融合焊缝成形不良等缺陷 焊速过慢,使温度过高,热影响区宽度增加,焊接接头的晶粒变粗,机械性能降低 ,变形量增大,同时焊速过慢还会使每层的厚度增大,导致熔渣倒流,形成夹渣等缺陷。

3) 电弧电压:焊接过程中合理的控制电弧长度是保证焊缝稳定的重要因素。电弧过长对熔化金属保护差,空气中的氧 氮等有害气体容易侵入,使焊缝产生气孔,焊接金属的机械性能降低 但弧长过短,就会引起粘焊条现象,且由于电弧对熔池的表面压力过大,不利于熔池的熔合 ,使熔池中气体及熔渣上浮受阻,从而引起气孔 夹渣等缺陷的产生 4) 操作因素:在焊接生产过程中,焊工操作技术水平低 ,就意味着打底层的运条方法焊条角度接头方法中间层及盖面层的运条方法接头收尾等操作方法掌握不熟练

11焊接接头的组织特征有哪些?对焊接接头的性能有何影响?

焊接接头是基本金属或基本金属和填充金属在高温热源的作用下,经过加热和冷却过程而形成不同组织和性能的不均匀体

1) 焊接熔池和焊缝:焊接熔池是指由熔化的局部母材和填加材料所组成的具有一定几何形状的液态区域,而焊缝是指熔池凝固后所形成的固态区域。焊缝金属的组织和性能不仅取决于焊缝的相变行为,而且受到焊接熔池结晶行为的直接影响。

2) 焊接热影响区:焊接热影响区是焊接接头的重要组成部分,是焊缝两侧未经过熔化但组织和性能发生变化的区域。由于焊接热影响区不同部位所受热作用的不一致性,造成其内部组织和性能的分布极不均匀,以致可能使其成为焊接接头的较薄弱环节

3) 熔合区:熔合区是介于焊缝与热影响区之间的相当窄小的过渡区,是由部分熔化的母材和部分未熔化的母材所组成的区域。其化学成分、微观组织和力学性能极不均匀,常常是热裂纹、冷裂纹及脆性相的发源地,从而成为焊接接头的最薄弱环节。

对焊接接头性能的影响:

焊接接头的特点:具有组织和性能的不均匀性;易产生各种焊接缺陷;存在着应力集中,焊接残余应力、焊接变形等。

熔池焊缝:

熔池中的金属从液态变为固态的这种过程称为熔池的一次结晶。熔池凝固后的焊缝金属从高温冷却到室温时,还会发生固态的相变,产生不同的组织。焊缝的这种固态相变过程称为焊缝金属的二次结晶。

焊缝一次结晶组织中细柱状晶比粗柱状晶好,胞状晶比树枝晶好,因为粗晶体金属的强度、塑性和韧性都较低,而且热裂纹敏感性大,尤其是粗大的树枝晶对热裂纹的敏感倾向很强。

由于偏析、化学成分极不均匀,焊缝的抗裂性变差,偏析越严重,力学性能和抗腐蚀性的不均匀程度就越大,偏析使S、P聚集在焊缝中心,就容易产生热裂纹。

二次结晶组织的类型、特征和形态不同,则焊缝金属的性能也不同。晶粒度,晶粒越细,组织越均匀,其性能比粗大的不均匀组织要好。

热影响区:

热影响区的宽窄对焊接接头性能是有影响的,热影响区越窄,焊接产生的应力越大,越容易产生焊接裂纹;热影响区越宽,内应力越小,变形越大,但对于常用焊接结构,单纯的焊接应力还不足以形成裂纹,因此总希望热影响区越小越好。

熔合区:

焊接材料和钢材都为化学成分相近的低碳钢时,该区化学成分无明显变化,但靠近基本金属一侧可能具有过热组织的特点,晶粒粗大,金属塑性和韧性较低。是焊接接头中性能最差的区域。焊缝金属与基本金属化学成分、线膨胀系数和组织状态相差较大时,就会导致合金元素再分配,可能同时存在着较大的热应力和严重的淬硬组织,所以熔合区是产生裂纹、发生局部脆性破坏的危险区。

第16篇:聚合物成型模具制造技术复习提纲

高分子专业080321班复习资料 产权所有,翻版必究

聚合物成型模具制造技术复习提纲

考试时间:15周周一

1模具的分类? 工艺基准的选择对于保证加工精度,尤其是按尺寸大小分为大型、中型、小型; 保证零件之间的位置精度至关重要: 按生产批量分为大量、成批和单件小批量; (1)基准重合原则 (2)基准统一原则按精度要求分为高精度、中等精度和低精(3)基准对应原则 (4)基准传递与转换原则 度; 5工艺过程分阶段的主要原因? 按成批零件成型方法分为:冲模、塑料模、1)保证加工质量 2)合理使用设备,发挥设备压铸模、锻模、粉末冶金模、陶瓷模、橡胶模、玻璃模、铸造模。 其中塑料模又分为:压制成型模、注射模、挤出模、吹塑模、真空模等。 2模具制造的基本要求及特点? 要求:1)制造精度高2)使用寿命长 3)制造周期短4)模具成本低 特点:(1)制造质量要求高 (2)形状复杂 (3)材料硬度高 (4)单件生产 3模具加工方法? ①模具的去除法加工:(1)机械加工(2)电加工:1电火花线切割2型腔电火花加工3电解加工 (3)化学腐蚀加工 (4)特种加工:1机械特种加工,包括磨料流动加工、喷射加工、液力加工、超声波加工、喷水加工等;2热特种加工包括电子束加工、电火花磨削、激光、等离子束激光等方法 ②模具的成形加工法:(1)铸造法制模(2)塑性挤压法制模:1热压印法2冷挤压法3超塑性挤压法 ③模具的累加法加工:(1)喷涂(2)电镀(3)激光快速原型制造等加工工艺。 1模具制造工艺过程: ①成型件、结构件的加工 ②标准件、通用件的配购 ③模具组装和总装 ④试模验收交货 2基准的概念? 基准是用来确定生产对象上几何元素间的几何关系所依据的那些点、线、面。 3工艺基准的分类?工序的定义? 基准按其作用不同,可分为设计基准和工艺基准。(1)设计基准(2)工艺基准:工序基准、定位基准、测量基准、装配基准工件在一个工位上被加工或装配所连续完成所有工步的那一部分工艺过程。 4工艺基准选择原则?

的各自特点 3)便于安排热处理工序 4)毛坯中残存的缺陷如暗伤、裂痕、夹质和气孔、砂眼及加工余量不足等可在粗加工中提前发现及早处理减少损失。 6加工阶段的划分? 1)粗加工阶段 2)半精加工阶段3)精加工阶段 4)光整加工阶段1数控电火花加工的工作原理? 电火花加工又称为放电加工,是利用工具电极和工件之间在一定工作介质中产生脉冲放电的电腐蚀作用而进行加工的一种方法,也称电蚀加工。 2 EDM的特点? 1)可以加工难切削材料。 2)EDM可以加工形状复杂、工艺性差的零件。 3)电极制造麻烦,加工效率低。 4)存在电极损耗,影响质量的因素复杂,加工稳定性差。 3 EDM中极性效应 极性效应的影响—正、负电极表面分别受到负电子和正离子的轰击和瞬时热源的作用,在两极表面所分配到的能量不一样,因而熔化、汽化抛出的电蚀量也就不一样。4型腔电火花加工的工艺方法 1)单电极平动法 2)多电极更换法 3)分解电极法 4)展成法即创成法 5)混粉电火花大面积光泽加工(面积效应)1快速成型工艺原理? 在CAD造型系统中获得三维CAD模型,或通过测量仪器测取实体的形状尺寸,转化为CAD模型→再对模型数据进行处理,沿某一方向进行平面“分层”离散化,然后通过成形机对坯料分层成形加工,并堆积成原型 2光固化立体成形技术? 1),能制造尺寸精度可达±0.1mm的精细零

件。2)成型过程自动化程度高。3)表面质量好4)可直接制造塑料件,产品可为透明体。 5)可制作结构十分复杂及面向熔模精密铸造的具有中空结构的消失型。 3 叠层制造工艺?

叠层实体制造技术先将单面涂有热熔胶的胶纸带通过热辊加热加压,与先前已形成的实体粘结(层合)在一起,此时,位于其上方的激光器按照分层CAD模型所获得的数据,将一层纸切割成所制零件的内外轮廓,轮廓以外不需要的区域,则用激光切割成小方块(废料),该层切割完后,工作台下降一个纸厚的高度,新的一层纸再平铺在刚成形的面上,通过热压装置将它与下面已切割层粘合在一起,激光束再次切割。最后形成由许多小废料包围的三维原型零件,取出原型,将多余的废料块剔除,就可获得三维产品。

4选择性激光烧结技术?

选择性激光烧结技术(Selective Laser Sintering, SLS)采用CO2激光器对粉末材料(塑料粉、陶瓷与粘结剂的混合粉、金属与粘结剂的混合粉等)进行选择性烧结,是一种由离散点一层层堆积成三维实体的方法。

5熔丝沉积成形工艺?

熔融沉积成形(Fused Deposition Modeling, FDM)是一种不依靠激光作为成形能源,而将各种丝材加热熔化的成形方法。 6硅橡胶模的特点?制模工艺?

特点:以原型为样件,采用硫化的有机硅橡胶浇注,直接制造硅橡胶模具,由于硅橡胶具有良好的柔性和弹性,对于结构复杂、花纹精细、无拔模斜度的甚至有倒拔模斜度、以及具有深凹槽的零件来说,制品成形后顺利脱模。另外,硅橡胶模具有良好的仿真性、强度和极低的收缩率,能经受重复使用和粗劣操作。

工艺:①制造原型,对其表面进行处理;②在成形机中固定放置原型,模框,在原型表面涂脱模剂;③将硅橡胶混合体放置在抽真空装置中,抽去其中的气泡,浇注进模框;④在硅橡胶固化后,沿分型面切开硅橡胶,取出原型,即得硅橡胶模具。 7电弧喷涂快速制模工艺?

将两根带电的制模专用金属丝通过导管不

断向前输送,金属丝在喷枪前相交形成电弧,金属丝经电弧熔化,在压缩空气作用下,将熔化的金属雾化成金属微粒,并以一定速度喷到样模表面,一层一层地相互叠加堆积而形成高密度、高结合强度的金属喷涂层,即模具型腔的壳体(或实体)。这层壳体的内壁形状与样模表面一致,从而形成了所需的模具型腔。壳体与其他基体材料填充加固,结合成一整体,再配以其他部件,即组成一副完整的模具。 8电铸模具原理与特点?

原理:与电镀相同,在母模表面通过电铸获得适当厚度的金属沉积层,然后将这层金属沉积层从母模上分离下来,形成所需型腔或形面的加工方法。 材料有电铸镍、电铸铜、电铸铁三种。

特点:1)电铸型腔与母模的尺寸误差小(复制性好),只有几微米,表面粗糙度二者相当;2)把难以加工或不可能直接加工的内形(如斜齿轮模具型腔)转化为电铸母模的外形加工,降低了加工难度;3)可直接用制品作母模来制造型腔,也可用电铸方法复制出已有的模具型腔,减少了很多工艺环节,提高了效率;4)电铸获得的型腔或电极可满足使用性能,一般不需修整;5)电铸时减少沉积速度缓慢,周期长,电铸镍一般一周;6)电铸层厚度较薄(一般为4~8mm),不易均匀,较大内应力,大型电铸件的变形显著,且不能承受大的冲击载荷。 9环氧树脂模具?

结构与普通注射模相同,只是型腔部位采用环氧树脂,寿命约4000~5000次,因为其本身承受不了注射中的反复开合模和注射压力的冲击,必须有金属框架作为背衬。

1 高速加工定义?

定义:高速加工主要指高速切削加工,是使用超硬材料刀具,在高转速、高进给速度下提高加工速度和加工质量的现代加工技术。 2超声加工的特点?在模具制造中的应用? 特点:1)适于加工硬脆材料,但加工效率低。

2)机床结构比较简单,工具可用较软的材料,易加工成复杂的形状,工具与工件之间不需要作比较复杂的运动。

3)可用加工薄壁、窄缝、低刚度工件;表面粗糙度较好。

应用:1)超声型孔、型腔等加工 也可用于切割加工;2)超声抛光 3)超声清洗

3激光加工的特点?在模具制造中的应用? 特点:

1)不需要加工工具,很适于自动化连续加工,2)能量密度大,几乎可加工任何材料3)加工速度快、效率高,热影响区域小4)适于加工深而小的空隙和窄缝5)可用透过光学透明材料对工件加工,特别适于有特殊环境要求的工件6)不需要真空和X射线进行防护

应用:1)LOM2)RT3)表面强化与修复(见后面章节)4)其他如激光涂覆、激光堆焊、切割、打孔、标记等

1 注射模具成型尺寸的制造公差要求? 一般模具是制品尺寸公差的1/3~1/5, 高精度模具是制品尺寸公差的1/8~1/10 2 试模过程?

料筒清理→注射量计量→工艺参数调整→试模数据的记录

3 注射模成型件、结构间之间的配合公差要求?

1)紧固部分的配合精度一般选用H7/k6或H7/m6;2)滑动部分的配合精度一般选H7/e6或H7/f7或H7/g6三种

4注射模具成型零件可用哪些加工方法进行加工?

①普通机床:车、铣、刨、磨、钻、镗等②专用机床加工:各种数控机床加工、仿形机床加工等③电火花、线切割加工④快速成形技术加工⑤超声波、电解成型、化学加工、激光、高压水射流等特种加工。 5 注射模具的装配方法有哪些?

1)互换装配法2)分组装配法3)调整法4)修配法

6 注射模具装配基准的选择? 1)以型腔、型芯为装配基准,称为第一基准。 2)以模具动、定模板(A、B板)两个互相垂直的侧面为基准称为第二基准。 7 注射模具试模目的?

目的:1)验证模具结构是否正确、可靠2)使用性能是否良好、稳定3)所成型制品是否合格4)连续生产一千件的废品率5)给制品的正式生产找出最佳工艺参数 1 塑料模具材料包括哪些?

模具材料包括钢、铸铁、硬质合金、有色金属等金属材料,以及陶瓷、石膏、环氧树脂、木材等非金属材料。其中,金属材料由于具有力学性能方面的优势而占据主导地位,而钢为最主要材料。

2模具材料的基本性能要求?

(1) 使用性能—材料在工作条件下表现出来的性能:1)机械负荷方面 硬度、强度、韧性2)热负荷 高温强度、耐热疲劳性、热稳定性3)表面负荷 耐磨性、抗氧化性、耐蚀性

(2) 工艺性能—采用某种工艺方法加工金属材料的难易程度:1)铸造性能2)锻造性能3)焊接性能4)切削加工性能5)化学蚀刻性能6)热处理性能

3模具的热处理的分类?

金属材料的热处理可分为:普通热处理、表面热处理、特殊热处理。

4表面处理技术包括哪几方面?

电镀与化学镀技术(电化学加工技术)2)激光表面处理技术3)气相沉积技术4)TD处理技术5)离子注入技术6)电子束加工7)等离子体加工 1模具的验收项目

1)模具的外观检查2)模具的尺寸检查3)试模后的制品检查4)模具稳定性检查5)模具材料和热处理检查6)模具动作的检查

第17篇:快速成型技术复习小结[推荐]

快速成型技术复习小结

1.快速成型:简称RP,即将计算机辅助设计CAD\\计算机辅助制造CAM\\计算机数字控制CNC、激光、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的工件三维设计模型,对其进行分层切片,得到各层截面的二维轮廓信息,快速成型机的成形头按照这些轮廓信息在控制系统的控制下,选择性地固化或切割一层层的成形材料,形成各个截面轮廓,并逐步顺序叠加成三维工件。

2. 快速成形技术全过程步骤:a.前处理b.分层叠加成型c.后处理

快速成形制造流程:CAD模型→面型化处理→分层→层信息处理→层准备→层制造→层粘接→实体模型

3. 什么是快速模具制造技术?该技术有何特点?

快速模具制造就是以快速成形技术制造的快速成型零件为母模,采用直接或间接的方法实现硅胶模、金属模、陶瓷模等模具的快速制造从而形成新产品的小批量制造,降低新产品的开发成本。特点:制模周期短、工艺简单、易于推广,制模成本低,精度和寿命都能满足特定的功能需要,综合经济效益好,特别适用于新产品开发试制、工艺验证和功能验证以及多品种小批量生产。 4. 快速成形与传统制造方法的区别? 传统方法根据零件成形过程分为两大类:一类是以成型过程中材料减少为特征,通过各种方法将零件毛胚上多余材料去除,即材料去除法,二类是材料的质量在成型过程中基本保持不变,成型过程主要是材料的转移和毛胚形状的改变即材料转移法,但此类方法生产周期长速度慢。快速成型技术可以以最快的速度、最低的成本和最好的品质将新产品迅速投放市场。

5.目前比较成熟的快速成型技术有哪几种?它们的成型原理上分别是什么?

液态光固化聚合物选择性固化成形简称SLA,粉末材料选择性烧结成形简称SLS,薄型材料选择性切割成形简称LOM,丝状材料选择性熔覆成形简称FDM

⑦SLA原理:1利用计算机控制下的紫外激光,按预定零件各分层截面的轮廓为轨迹逐点扫描,使被扫描区的光敏树脂薄层产生光聚合反应,从而形成零件的一个薄层截面;2当一层固化完毕,移动升降台,在原先固化的树脂表面上再敷上一层新的液态树脂,刮刀刮去多余的树脂;3激光束对新一层树脂进行扫描固化,使新固化的一层牢固地粘合在前一层上;4重复

2、3步,至整个零件原型制造完毕。『或SLA是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长(λ=325nm)和功率(P=30mW)的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也从液态转变成固态』

⑦SLS原理: 1在先开始加工之前,先将充有氮气的工作室升温,温度保持在粉末的熔点之下;2成型时,送料筒上升,铺粉滚筒移动,先在工作台上铺一层粉末材料;3激光束在计算机控制下,按照截面轮廓对实心部分所在的粉末进行烧结,使粉末融化并相互黏结,继而形成一层固体轮廓,未经烧结的粉末仍留在原处,作为下一层粉末的支撑;4第一层烧结完成后,工作台下降一截面层的高度,再铺上一层粉末,进行下一层烧结,如此循环,直至完成整个三维模型 FDM原理:加热喷头正在计算机的控制下,可根据界面轮廓的信息作X—Y平面运动和高度Z方向的运动丝状热塑性材料由供丝机构送至喷头,并在喷头中加热至熔融态,然后被选择性涂覆在工作台上,快速冷却后形成界面轮廓。一层截面完成后,喷头上升一截面层的高度在进行下一层的涂覆,如此循环,最终形成三维产品。

LOM:LOM快速成形系统由计算机原材料存储及送进机构、热粘压机构、激光切割系统、可升降工作台、数控系统、模型取出装置和机架等组成。计算机用于接受和存储工件的三维模型沿模型的成型方向截取一系列的截面轮廓信息发出控制指令原材料存储及送进机构将存于其中的原材料。热黏压机构将一层层成形材料粘合在一起。可升降工作台支撑正在成型的工件并在每层成形完毕之后,降低一个材料厚度以便送进、粘合和切割新的一层成形材料。数控系统执行计算机发出的指令,使材料逐步送至工作台的上方,然后粘合、切割,最终形成三维工件。

6.哪些成形方法需要支撑材料?为什么?

SLA、FDM需要制作支撑,LOM、SLS不需要制作支撑。原因:在SLA成形过程中为了确保制件的每一部分可靠固定,同时减少制件的翘曲变形,仅靠调整制件参数远不能达到目的,必须设计并在加工中制作一些柱状或筋状的支撑结构;LOM:工件外框与截面轮廓间的多余材料在加工中起到支撑作用,故不需支撑材料;SLS:未烧结的松散粉末可以作为自然支撑,故不需要支撑材料。

7.光固化快速成形(SLA)有那几种形式的支撑?

a.角板支撑b.投射特征边支撑c.单臂板支撑d.臂板结构支撑e.柱形支撑 8.常用的快速成形技术所用的成形材料分别是什么?分别有什么要求?

SLA:材料为光固化树脂。要求:a.成形材料易于固化,且成形后具有一定的粘接强度b.成形材料的粘度不能太高,以保证加工层平整并减少液体流平时间c.成形材料本身的热影响区小,收缩应力小d.成形材料对光有一定的透过深度,以获得具有一定固化深度的曾片。 SLS:材料为所有受热后能相互粘结的粉末材料或表面覆有热塑(固)性黏结剂的粉末。要求:a.具有良好的烧结成形性能,即无需特殊工艺即可快速精确地成形原理b.对直接用作功能零件或模具的原型,其力学性能和物理性能要满足使用要求c.当原型间接使用时,要有利于快速、方便的后续处理和加工工艺。

LOM:薄层材料多为纸材,黏结剂一般多为热熔胶。对纸材要求:a.抗湿性b.良好的浸润性c.收缩率小d.一定的抗拉强度e.剥离性能好f.易打磨g.稳定性好。对热熔胶的要求:a.良好的热熔冷固性b.在反复熔化-固化条件下,具有较好的物理化学稳定性c.熔融状态下与纸材具有良好的涂挂性与涂匀性d.与纸具有足够的粘结强度e.良好的废料分离性能

FDM:材料为丝状热塑性材料。材料要求:a.黏度低b.熔融温度低c.黏结性要好d.收缩率对温度不能太敏感

9.这四种快速成形技术的优缺点分别是什么?

SLA优点:技术成熟应用广泛,成形速度快精度高,能量低。缺点:工艺复杂,需要支撑结构,材料种类有限,激光器寿命短原材料价格高。

SLS优点:不需要支撑结构,材料利用率高,选用的材料的力学性能比较好,材料价格便宜,无气味。缺点:能量高,表面粗糙,成形原型疏松多孔,对某些材料需要单独处理。

LOM优点:对实心部分大的物体成形速度快,支撑结构自动的包含在层面制造中,低的内应力和扭曲,同一物体中可包含多种材料和颜色。缺点:能量高,对内部空腔中的支撑物需要清理,材料利用率低,废料剥离困难,可能发生翘曲

FDM优点:成形速度快,材料利用率高,能量低,物体中可包含多种材料和颜色。缺点:表面光洁度低,粗糙。选用材料仅限于低熔点的材料。

TDP优点:材料选用广泛,可以制造陶瓷模具,用于金属铸造,支撑结构自动包含在层面制造中,能量低。缺点:表面粗糙,精度低,需处理(去湿或预加热到一定温度)

10.主要快速成形系统选用原则:A:成形件的用途(a检查并核实形状、尺寸用的样品b性能考核用的样品c模具d小批量和特殊复杂零件的直接生产e新材料的研究)B:成形件的形状C:成形件的尺寸大小D成本(a设备购置成本b设备运行成本c人工成本)E技术服务(a保修期b软件的升级换代c技术研发力量)F用户环境

11.快速成形的全处理主要包括:CAD三维模型的构建、CAD三维模型STL格式化以及三维模型的切片处理等

12.构造三维模型的主要方法:a应用计算机三维设计软件,根据产品的要求设计三维模型b应用计算机三维设计软件,将已有产品的二维三视图转换为三维模型c防制产品时,应用反求设备和反求软件,得到产品的三维模型d利用网络将用户设计好的三维模型直接传输到快速成形工作站

13.在快速成型的前处理阶段为什么要把三维模型转化为STL文件格式?STL格式文件的规则和常见错误有哪些? 由于产品上有一些不规则的自由曲面,为方便的获得曲面每部分的坐标信息,加工前必须对其进行近似处理,此近似处理的三维模型文件即为STL格式文件

规则:a共顶点规则b取向规则c取值规则d合法实体规则

常见错误:a出现违反共顶点规则的三角形b出现违反取向规则的三角形c出现错误的裂缝或孔洞d三角形过多或过少e微小特征遗漏或出错

14.前处理环节选择零件的成形方向应注意哪些问题?

a成形方向对工件品质的影响b成形方向对材料成本的影响c成形方向对制作时间的影响

15.快速成形中的主要切片形式有哪些?其中那种切片形式精度最高?为什么?

a STL切片b 容错切片c适应性切片d直接适应性切片e直接切片。 直接切片形式精度最高。因为a能减少快速成形的前处理时间b可避免STL格式文件的检查和纠错过程c可降低模型文件的规模d能直接采用RP数控系统的曲线插补功能,从而可提高工件的表面质量e能提高制件的精度

16.快速成形的后处理主要有哪些工序? a剥离b修补、打磨、抛光c表面涂覆

17.零件成形方法:去除成形、受迫成形、堆积成形、生长成形 18.激光固化的基本过程:制造数据的获取;层准备;层固化;层层堆积;后处理

19.光固化成形材料分类:自由基光固化树脂;阳离子光固化树脂;混杂型光固化树脂 20.LOM快速成形:由计算机、原材料存储及送进机构、热粘压机构、激光切割系统、可升降工作台、数控系统、模型取出装置和机架等组成。LOM快速成形机主要参数:激光切割速度;加热辊温度与压力;激光能量;切碎网格尺寸。LOM后处理:废料去除、后置处理 21.常用的扫描机:坐标测量机;激光扫描机;零件断层扫描机;CT;磁共振成像

22.快速成形表面涂覆:喷刷涂料;电化学沉积;无电化学沉积;物理蒸发沉积;电化学沉积和物理蒸发沉积的综合

23.快速成形精度包括软件和硬件两部分。软件部分指模型数据的处理精度;硬件部分指成型设备的各项精度。

成形件的精度:尺寸精度、形位精度、表面质量。

24.产生零件误差的因素分析:1数据处理产生的误差(①面型化处理造成的误差②分层切片时产生的误差)2成形加工产生的误差(①层准备时产生的误差②层制造与层叠加产生的误差③后处理不当产生的误差) 成形加工包括层准备、层制造、层叠加

希望以上这些可以对您的学习有所帮助,但是由于水平有限以及其他方面的因素,文本里面一定还存在不尽人意的地方和错误,恳请读者斟酌参考。

小编 2013.5.5

第18篇:教师个人工作总结成型

个人工作总结

本学期在学校领导的正确领导下,我不仅圆满地完成了本学期的教学任务,还在业务水平上有了很大的提高.现对本学期教学工作作出总结,希望能发扬优点,克服不足,总结经验教训,继往开来,以促进教育工作更上一层楼。现将有关方面总结如下:

1、热爱并忠诚于人民的教学事业,教学态度认真,教风扎实,严格遵守学校的规章制度.

2、认真备课,不但备学生而且备教材备教法,根据教材 内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。

3、增强上课技能,提高教学质量,使讲解清晰化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主作用,让学生学得容易,学得轻松,学得愉快。

4、认真批改作业:布置作业做到精读精练。有针对性,有层次性。对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。

6、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。

总之,在教书育人的道路上我付出的是辛勤的汗水和真挚的泪水,但同时我也收获了充实与快乐。在以后的工作中我将一如既往用心去教诲我的学生,望在以后的工作中能发扬优点,克服不足,总结经验教训,使教学工作更上一层楼。

第19篇:快速成型技术课程感想 苏飞

快速成型技术课程感想

三维打印机是快速成型的一种工艺,采用层层堆积的方式分层制作出三维模型,其运行过程类似于传统打印机,只不过传统打印机是把墨水打印到纸质上形成二维的平面图纸,而三维打印机是把液态光敏树脂材料、熔融的塑料丝、石膏粉等材料通过喷射粘结剂或挤出等方式实现层层堆积叠加形成三维实体。 这一学期,刘老师为我们开了快速成型课程。刚开始,同学们并不清楚什么是快速成型,在后来的学习中,我们逐渐了解到快速成型是近年来发展起来的一种先进制造技术。快速成形技术20世纪80年代起源于美国,很快发展到日本和欧洲,是近年来制造技术领域的一次重大突破。快速成形是一种基于离散堆积成形思想的数字化成形技术;是CAD、数控技术、激光技术以及材料科学与工程的技术集成。它可以自动、快速地将设计思想物化为具有一定结构和功能的原型或直接制造零部件,从而可对产品设计进行快速评价、修改,以响应市场需求,提高企业的竞争能力。

几节课过后,老师给我们布置了作业,让我们分组讨论方案然后用犀牛建模,最后用三维打印机打印出来。我们组的构想是一款新颖的眼镜,想法是由姜飞提出的,我们都非常支持这一想法,所以就这一方案进行了许多的改善。最终方案确定,拿给老师看,成功通过,我们都非常兴奋。下一步就是犀牛建模了,眼镜草图画起来很容易但是用犀牛建模就不简单了,一些拐角部分的曲面很难一次性的建模成功。我们都很焦急,担心完不成这个作业,最后姜飞提出可以把眼镜分成几个部分来分开建模来降低难度。很好的方法,我们将眼镜劈成三个部分,主体部分和眼架部分。这样一分开之后,思路也清晰了,避免了很多误区。 克服了众多困难之后,终于把把眼镜建模完成。一切准备就绪后去工程训练中心打印,不过打印机的速度真的不敢恭维,等了几个小时才将眼镜打印出来,而且中间还出了一些问题。不过庆幸的是最终成功的把眼镜打印了出来。付出终有回报,这么一段时间的努力终于获得了收货。虽然最终打印出来的眼镜仍然有一些问题,但是这毕竟是第一次用三维打印机将自己心中的想法形象的表达出来,心中的喜悦之情于言表。也正是这一次作业,同学们切身感觉到了三维打印这一技术的便利性,低成本,高效率的吧心中的想法变成现实。

虽然这一次的快速成型课程很快就结束了,但是它带我们的确很多很多,科学技术是第一生产力,憧憬着未来能打印世界打印未来。

第20篇:材料成型及控制与自动化技术(材料)

材料成型及控制与自动化技术

材料成型及控制是一项基础也是很重要的技术,它不仅仅是用于船舶、航空、火车等运输领域,在工民建和能源方面也占有非常重要的地位。所以说材料成型及控制的发展可以给人类带来很大的帮助。随着科学技术在机械化和自动化等技术方面的发展越来越成熟,这些技术在材料成型及控制上的应用也日益增多,当今制造技术向着自动化的方向发展。文章将对自动化技术在铸造、锻压和焊接技术中的应用做探讨。

2.1 铸造

铸造:将待炼金属加热至熔融状态,并制造铸型,然后把熔融金属浇入铸型,等金属凝固后获得一定形状、尺寸、成分、性能铸件的成形方法。铸造是人类掌握的最早的一种金属热加工工艺,至今已经有大概6000年的历史。我国约在公元前1700~公元前1000年之间就已经进入对青铜铸造的全盛时期,工艺上已达到相当高的水平。铸造是指将已加热至熔融状态的物质倒入特定的模具中冷却以获得预期想要的物品的加工方式。被加热为熔融状态的物质大多数是原为固态(例:铜、铁、铝、锡、铅等),而铸模的材料可以是沙、金属甚至陶瓷,但这类物质多为耐高温的。

2.2 锻压

锻压是锻造和冲压的合称,就是利用锻压设备的锤头、冲头或者模具等工具对待加工材料施压,使材料产生塑性变形,以此获得所需要的形状及尺寸的产品加工方式。锻压作为金属加工的主要方法之一,在国民经济中占有非常重要的位置,是装备制造业,尤其是机械、汽车行业,以及军工、航空航天工业中的不可替代的主要加工工艺。。

2.3 焊接

焊接是一种用加热的方法将金属或者其他材料结合的技术。为了满足工业的发展的需求,焊接技术主要包含熔焊、钎焊和固相焊。伴随着数字化、自动化、计算机、机械技术的不断进步,还有就是对焊接的要求越来越高,焊接的形式也越来越多样化、自动化。

材料成型机控制技术应用中的问题和发展前景

就我中国材料成型及控制技术水平与国际水平相比较还是有很大的差别的,这是不能忽略的事实。在我国,材料成型及控制的过程面临着污染问题严重、能源消耗大和时间消耗长的问题。对于如何解决这些问题成为我国材料成型及控制技术迈入国际先进水平的挡路石。

伴随着计算机和自动化技术的发展以及其在材料成型及控制技术上的运用,材料成型及控制技术的发展有了很大的进步。高效性:随着自动化技术水平的不断发展以及计算机信息技术的运用,材料成型及控制技术的自动化程度越来越高,这不仅大大提高了材料的成型,而且还提高了产品的成功率。节能性:结合自动化的大规模生产产品可以明显减少产品成本和损耗,高度发展的计算机技术将会推动产品朝节能化的方向前进。科学技术的不断发展将会使材料成型及控制技术向节能分享不断发展。环保性:科学技术发展到今天已经有好多新型的材料应用到生产上,这不仅缩短了材料成型的时间,还大大减小了材料成型过程中的污染危害。以后会有更多、环保的节能材料被人们发现,这也会大大减少材料成型过程的污染。自动化技术在材料成型及控制方面的成功运用正是材料成型及控制实现在高效、节能、环保方面发展的重要前提。

《成型技术工作总结范文.doc》
成型技术工作总结范文
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

相关推荐

会计个人工作总结专业技术个人总结销售个人工作总结员工个人工作总结党员个人工作总结医生个人工作总结护士个人工作总结村干部个人总结试用期工作总结出纳个人工作总结文员个人工作总结银行个人工作总结秘书个人工作总结办公室个人总结其他个人工作总结
下载全文