高中物理所有知识点总结

2020-03-03 17:31:57 来源:范文大全收藏下载本文

高考物理基本知识点总结

一.教学内容:

知识点总结

1.摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反

静摩擦力:0

滑动摩擦力:fN

2.竖直面圆周运动临界条件:

绳子拉球在竖直平面内做圆周运动条件:(或球在竖直圆轨道内侧做圆周运动)

绳约束:达到最高点:v≥gR,当T拉=0时,v=gR

mg=F向,

杆拉球在竖直平面内做圆周运动的条件:(球在双轨道之间做圆周运动)

杆约束:达到最高点:v≥0

T为支持力

0

T=0

mg=F向,

v=gR

T为拉力

v>gR

注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。

3.传动装置中,特点是:同轴上各点相同,A=C,轮上边缘各点v相同,vA=vB

4.同步地球卫星特点是:①_______________,②______________

①卫星的运行周期与地球的自转周期相同,角速度也相同;

②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km处,运行速度3.1km/s。

m1m2

25.万有引力定律:万有引力常量首先由什么实验测出:F=Gr,卡文迪许扭秤实验。

- 1

gR2=GM

10.从倾角为α的斜面上A点以速度v0平抛的小球,落到了斜面上的B点,求:SAB

12gt

2在图上标出从A到B小球落下的高度h=和水平射程s=v0t,可以发现它们之间的几何关系。

11.从A点以水平速度v0抛出的小球,落到倾角为α的斜面上的B点,此时速度与斜面成90°角,求:SAB

gtv在图上把小球在B点时的速度v分解为水平分速度v0和竖直分速度vy=gt,可得到几何关系:0tgα,求出时间t,即可得到解。

12.匀变速直线运动公式:

1sv0tat222asv2v0a22vtv2sv0vtt222vs22vvt02vtv0tvvts0·t2

smsn(mn)·aT2

2R2

13.匀速圆周周期公式:T=v频率公式:f1vnT22R

s速度公式:vrtt22T

mv22向心力:F向m2RmRT R角速度与转速的关系:ω=2πn 转速(n:r/s)

14.波的图像、振动图像

振动过程和波的形成过程:质点的振动方向、波的传播方向、波形三者的关系

波速、波长、频率的关系:f的变化关系。

T

水平弹簧振子为模型:对称性——在空间上以平衡位置为中心。掌握回复力、位移、速度、加速度的随时间位置2单摆周期公式:T= lg

- 3

动量守恒条件:

①系统不受外力或系统所受外力为零; ②F内>F外;

③在某一方向上的合力为零。

动量守恒的应用:核反应过程,反冲、碰撞 应用公式注意: ①设定正方向;

②速度要相对同一参考系,一般都是对地的速度 ③列方程:m\'\'1v1m2v2m1v1m2v2或△P1=-△P2

17.碰撞: 碰撞过程能否发生依据(遵循动量守恒及能量关系E前≥E后)

完全弹性碰撞:钢球m1以速度v与静止的钢球m2发生弹性正碰,

v1m2碰后速度:mv2m11\'m1v2\'v11m

2 m1m2

碰撞过程能量损失:零

完全非弹性碰撞:

质量为m的弹丸以初速度v射入质量为M的冲击摆内穿击过程能量损失:E损=mv2/2-(M+m)v22/2,mv =+M)v2,(M+m)v22/2=(M+m) gh vMmm2gh

1碰撞过程能量损失:2mv2MMm 非完全弹性碰撞:质量为m的弹丸射穿质量为M的冲击摆,子弹射穿前后的速度分别为v0和v1。

mvm(v0v1)0mv1MvvM

E12112mv202mv1E2Mv2

碰撞过程能量损失:Q1mv21mv21220212Mv

18.功能关系,能量守恒

功W=FScosα ,F:恒力(N)

S:位移(m)

α:F、S间的夹角

机械能守恒条件:只有重力(或弹簧弹力)做功,受其它力但不做功

应用公式注意: ①选取零参考平面;

②多个物体组成系统机械能守恒;

m (

112mv12mgh1mv2mgh2EEkp 22③列方程:或摩擦力做功的特点:

①摩擦力对某一物体来说,可做正功、负功或不做功; ②f静做功机械能转移,没有内能产生; ③Q=f滑 ·Δs (Δs为物体间相对距离) 动能定理:合力对物体做正功,物体的动能增加

mvtmvW总02222W总EK

方法:抓过程(分析做功情况),抓状态(分析动能改变量) 注意:在复合场中或求变力做功时用得较多

能量守恒:△E减=△E增

(电势能、重力势能、动能、内能、弹性势能)在电磁感应现象中分析电热时,通常可用动能定理或能量守恒的方法。

19.牛顿运动定律:运用运动和力的观点分析问题是一个基本方法。 (1)圆周运动中的应用:

a.绳杆轨(管)管,竖直面上最“高、低”点,F向(临界条件) b.人造卫星、天体运动,F引=F向(同步卫星) c.带电粒子在匀强磁场中,f洛=F向 (2)处理连接体问题——隔离法、整体法

(3)超、失重,a↓失,a↑超

(只看加速度方向)

20.库仑定律:公式:Fkq1q2r2

条件:两个点电荷,在真空中

21.电场的描述:

电场强度公式及适用条件:

E①Fq(普适式)

kQr2(点电荷),r——点电荷Q到该点的距离

Ud(匀强电场),d——两点沿电场线方向上的投影距离 ②E③E电场线的特点与场强的关系与电势的关系:

①电场线的某点的切线方向即是该点的电场强度的方向; ②电场线的疏密表示场强的大小,电场线密处电场强度大; ③起于正电荷,终止于负电荷,电场线不可能相交。 ④沿电场线方向电势必然降低 等势面特点:

要注意点电荷等势面的特点(同心圆),以及等量同号、等量异号电荷的电场线及等势面的特点。 ①在同一等势面上任意两点之间移动电荷时,电场力的功为零;

②等势面与电场线垂直,等势面密的地方(电势差相等的等势面),电场强度较强; ③沿电场线方向电势逐渐降低。

考纲新加:

22.电容:

平行板电容决定式:Cs4kd(不要求定量计算)

定义式:CQU

单位:F(法拉),1F106F,1pF1012F

注意:当电容与静电计相连,静电计张角的大小表示电容两板间电势差U。 考纲新加知识点:电容器有通高频阻低频的特点 或:隔直流通交流的特点 当电容在直流电路中时,特点: ①相当于断路

②电容与谁并联,它的电压就是谁两端的电压

③当电容器两端电压发生变化,电容器会出现充放电现象,要求会判断充、放电的电流的方向,充、放电的电量多少。

23.电场力做功特点:

①电场力做功只与始末位置有关,与路径无关 ②WqUAB

③正电荷沿电场线方向移动做正功,负电荷沿电场线方向移动做负功 ④电场力做正功,电势能减小,电场力做负功,电势能增大

24.电场力公式:

FqE,正电荷受力方向沿电场线方向,负电荷受力方向逆电场线方向。

25.元电荷电量:1.6×10-19C

26.带电粒子(重力不计):电子、质子、α粒子、离子,除特殊说明外不考虑重力,但质量考虑。

带电颗粒:液滴、尘埃、小球、油滴等一般不能忽略重力。

27.带电粒子在电场、磁场中运动

电场中

加速——匀变速直线 偏转——类平抛运动 圆周运动

磁场中

匀速直线运动

- 7

v2BqvmrmvrBq2r2mTvBq

特点:f洛与v方向垂直, f只改变v的方向,不改变v大小,f洛永远不做功。

33.法拉第电磁感应定律:

公式:感应电动势平均值:n

方向由楞次定律判断。

B,E·Stt

注意:

(1)若面积不变,磁场变化且在B—t图中均匀变化,感应电动势平均值与瞬时值相等,电动势恒定 (2)若面积不变,磁场变化且在B—t图中非均匀变化,斜率越大,电动势越大 感应电动势瞬时值:ε=BLv,L⊥v,α为B与v夹角,L⊥B 方向可由右手定则判断

34.自感现象

L单位H,1μH=106H -自感现象产生感生电流方向 自感线圈电阻很小 K闭合现象(见上图) K断开现象(见上图) 总是阻碍原线圈中电流变化 从时间上看滞后 灯先亮,逐渐变暗一些

灯比原来亮一下,逐渐熄灭(此种现象要求灯的电阻小于线圈电阻,为什么?) 考纲新增:会解释日光灯的启动发光问题及电感线圈有通低频阻高频的特点。

35.楞次定律:

内容:感应电流的磁场总是阻碍引起感应电流磁通量的变化。 理解为感应电流的效果总是反抗(阻碍)产生感应电流原因 ①感应电流的效果阻碍相对运动

②感应电流的效果阻碍磁通量变化

③用行动阻碍磁通量变化

④a、b、c、d顺时针转动,a’、b’、c’、d’如何运动?

随之转动

电流方向:a’ b’ c’ d’ a’

36.交流电:从中性面起始:ε=nBsωsinωt

从平行于磁方向:ε=nBsωcosωt 对图中Bs,ε=0

对图中0,ε=nBsω

线圈每转一周,电流方向改变两次。

37.交流电ε是由nBsω四个量决定,与线圈的形状无关

38.交流电压:最大值m,nBs或nm

有效值有,2nBs2

注意:非正弦交流电的有效值有要按发热等效的特点具体分析并计算

平均值,t n39.交流电有效值应用:

①交流电设备所标额定电压、额定电流、额定功率 ②交流电压表、电流表测量数值U、I ③对于交变电流中,求发热、电流做功、U、I均要用有效值

40.感应电量(q)求法:

qItttRR

仅由回路中磁通量变化决定,与时间无关

41.交流电的转数是指:1秒钟内交流发电机中线圈转动圈数n

nf2

842.电磁波波速特点:C310m/s,Cf,是横波,传播不依赖介质。

考纲新增:麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场。

注意:均匀变化的电(磁)场产生恒定磁(电)场。周期性变化的电(磁)场产生周期性变化的磁(电)场,并交替向外传播形成电磁波。

43.电磁振荡周期:*T2Lc,考纲新加:电磁波的发射与接收

f12Lc

发射过程:要调制

接收过程要:调谐、检波

44.理想变压器基本关系:

1P2;②①PU1U2n1n2;③

I1I2n2n1

U1端接入直流电源,U2端有无电压:无 输入功率随着什么增加而增加:输出功率

45.受迫振动的频率:f=f策

共振的条件:f策=f固,A最大

46.油膜法:dVs

47.布朗运动:布朗运动是什么的运动? 颗粒的运动

布朗运动反映的是什么?大量分子无规则运动

布朗运动明显与什么有关?

①温度越高越明显;②微粒越小越明显

48.分子力特点:下图F为正代表斥力,F为负代表引力

①分子间同时存在引力、斥力 ②当r=r0,F引=F斥

③当rF引表现为斥力 ④当r>r0,引力、斥力均减小,F斥

49.热力学第一定律:EWQ(不要求计算,但要求理解)

W

Q>0表示:吸热

△E>0表示:温度升高, 分子平均动能增大

考纲新增:热力学第二定律热量不可能自发的从低温物体到高温物体。或:机械能可以完全转化为内能,但内能不能够完全变为机械能,具有方向性。或:说明第二类永动机不可以实现

考纲新加:绝对零度不能达到(0K即-273℃)

50.分子动理论:

温度:平均动能大小的标志

物体的内能与物体的T、v物质质量有关

一定质量的理想气体内能由温度决定(T)

51.计算分子质量: mMmolVmolNANA

- 11

衍射现象:泊松亮斑、单缝、单孔衍射

55.光子的能量:E=hν

ν——光子频率

56.光电效应:

①光电效应瞬时性

②饱和光电流大小与入射光的强度有关 ③光电子的最大初动能随入射光频率增大而增大 ④对于一种金属,入射光频率大于极限频率发生光电效应 考纲新增:hν=W逸+Ekm

57.电磁波谱:

说明:①各种电磁波在真空中传播速度相同,c=3.00×108m/s ②进入介质后,各种电磁波频率不变,其波速、波长均减小 ③真空中c=λf,,媒质中v=λ’f

无线电波:振荡电路中自由电子的周期性运动产生,波动性强,用于通讯、广播、雷达等。

红外线:原子外层电子受激发后产生,热效应现象显著,衍射现象显著,用于加热、红外遥感和摄影。 可见光:原子外层电子受激发后产生, 能引起视觉,用于摄影、照明。

紫外线:原子外层电子受激发后产生,化学作用显著,用来消毒、杀菌、激发荧光。

伦琴射线:原子内层电子受激发后产生,具有荧光效应和较大穿透能力,用于透视人体、金属探伤。 λ射线:原子核受激发后产生,穿透本领最强,用于探测治疗。 考纲新增:物质波

任何物质都有波动性

考纲新增:多普勒效应、示波器及其使用、半导体的应用

知道其内容:当观察者离波源的距离发生变化时,接收的频率会变化,近高远低。 58.光谱及光谱分析:

定义:由色散形成的色光,按频率的顺序排列而成的光带。 连续光谱:产生炽热的固体、液体、高压气体发光(钢水、白炽灯) 谱线形状:连续分布的含有从红到紫各种色光的光带

明线光谱:产生炽热的稀薄气体发光或金属蒸气发光,如:光谱管中稀薄氢气的发光。 谱线形状:在黑暗的背影上有一些不连续的亮线。

吸收光谱:产生高温物体发出的白光,通过低温气体后,某些波长的光被吸收后产生的 谱线形状:在连续光谱的背景上有不连续的暗线,太阳光谱 联系:光谱分析——利用明线光谱中的明线或吸收光谱中的暗线

①每一种原子都有其特定的明线光谱和吸收光谱,各种原子所能发射光的频率与它所能吸收的光的频率相同 ②各种原子吸收光谱中每一条暗线都与该原子明线光谱中的明线相对应 ③明线光谱和吸收光谱都叫原子光谱,也称原子特征谱线

59.光子辐射和吸收:

①光子的能量值刚好等于两个能级之差,被原子吸收发生跃迁,否则不吸收。 ②光子能量只需大于或等于13.6eV,被基态氢原子吸收而发生电离。

③原子处于激发态不稳定,会自发地向基态跃迁,大量受激发态原子所发射出来的光是它的全部谱线。

例如:当原子从低能态向高能态跃迁,动能、势能、总能量如何变化,吸收还是放出光子,电子动能Ek减小、势能Ep增加、原子总能量En增加、吸收光子。

60.氢原子能级公式:2EnE1n2,E113.6eV

10轨道公式:rnnr1,r10.5310m

能级图: n=4 -0.83eV n=3 -1.51eV

hν=∣E初-E末∣ n=2 -3.4eV

- 132341

69.放射性同位素:

①利用它的射线,可以探伤、测厚、除尘 ②作为示踪电子,可以探查情况、制药

70.电流定义式:Iqt

微观表达式:Inevs

电阻定义式:决定式:RUI

Rls

T..R

特殊材料:超导、热敏电阻

71.纯电阻电路

U2U22WUItIRttPUIIRRR

电功、电功率:、22QIRt WUIt非纯电阻电路:

电热能量关系:WQW机或化、PP热P机或化

72.全电路欧姆定律:IERr(纯电阻电路适用);U端EIr

断路:R

I0

U外 短路:R0

IEr

U内IrE

U外0

对tgα=r,tgβ=R,A点表示外电阻为R时,路端电压为U,干路电流为I。

73.平行玻璃砖:通过平行玻璃砖的光线不改变传播方向,但要发生侧移。侧移d的大小取决于平行板的厚度h,平行板介质的折射率n和光线的入射角。

74.三棱镜:通过玻璃镜的光线经两次折射后,出射光线向棱镜底面偏折。偏折角跟棱镜的材料有关,折射率越大,偏折角越大。因同一介质对各种色光的折射率不同,所以各种色光的偏折角也不同,形成色散现象。

75.分子大小计算:例题分析:

只要知道下列哪一组物理量,就可以算出气体分子间的平均距离 ①阿伏伽德罗常数,该气体的摩尔质量和质量; ②阿伏伽德罗常数,该气体的摩尔质量和密度; ③阿伏伽德罗常数,该气体的质量和体积; ④该气体的密度、体积和摩尔质量。 分析:①每个气体分子所占平均体积:

V01摩尔气体的体积摩尔质量NA密度·NA

13摩尔质量3dV密度NA ②气体分子平均间距:选②项

估算气体分子平均间距时,需要算出1mol气体的体积。

- 1516

由动能定理:qU1mv202(匀强电场、非匀强电场均适用)

或qEd1mv202(适用于匀强电场)

(2)静电场偏转:

带电粒子: 电量q 质量m;速度v0

偏转电场由真空两充电的平行金属板构成

板长L

板间距离d

板间电压U

板间场强:EUd

带电粒子垂直电场线方向射入匀强电场,受电场力,作类平抛运动。 垂直电场线方向,粒子作匀速运动。

Lv0t

tLv0

沿电场线方向,粒子作初速为零的匀加速运动

加速度:aqEqUmmd

从射入到射出,沿电场线方向偏移:

12qEL2qUL2yat2222mv02mdv0

偏向角:tgatqELqUL22v0mv0mdv0

(3)带电粒子在匀强电场中偏转的讨论: 决定y()大小的因素: ①粒子的电量q,质量m; ②粒子射入时的初速度v0;

③偏转电场:E(U)、L、d(EU)d

qEL2qELy22mv02mv0

tg

80.法拉第电磁感应定律的应用

基本思路:解决电源计算,找等效电路,处理研究对象力与运动的关系,功能及能转化与守恒关系。

题1:在磁感应强度为B的匀强磁场中,有一匝数为n的线圈,电阻为r,面积为s,将一额定电压为U、额定功率为P的电动机与之串联,电动机电阻为R,若要使电动机正常工作,线圈转动的角速度为多大?若旋转一圈,全电路产生多少热?

目的:交流电、非纯电阻电路 Em=nBsω

- 18

【模拟试题】

1.如图所示,由不同质量、电量组成的正离子束垂直地射入正交的匀强磁场和匀强电场区域里,结果发现有些离子保持原来的运动方向,未发生任何偏转。如果让这些不偏转的离子再垂直进入另一匀强磁场中,发现这些离子又分成几束,对这些进入后一磁场的不同轨迹的离子,可得出结论(

A.它们的动量一定各不相同

B.它们的电量一定各不相同

C.它们的质量一定各不相同

D.它们的电量与质量之比一定各不相同

2.均匀介质中,各质点的平衡位置在同一直线上,相邻质点的距离均为s,如图甲所示。振动从质点1从平衡位置开始向右传播,质点1从平衡位置开始运动时的速度方向竖直向上,经过时间t,前13个质点第一次形成如图乙所示的波形。关于这列波的周期和波速有如下说法

(1)这列波的周期T2t3

(2)这列波的周期Tt2

(3)这列波的传播速度v12s/t

(4)这列波的传播速度v16s/t

上述说法中正确的是(

A.(1)(3)

B.(1)(4)

C.(2)(3)

D.(2)(4)

3.某质点的运动规律如图所示,下列说法中正确的是(

A.质点在第1秒末运动方向发生变化

B.质点在第2秒内和第3秒内加速度大小相等而方向相反

C.质点在第3秒内速度越来越大

D.在前7秒内质点的位移为负值

4.如图所示,虚线MN左侧有垂直于纸面的匀强磁场,右侧无磁场,用水平外力将一个矩形导线框从图示位置匀速向右拉出磁场区,已知两次拉出速度之比为1:3,则在两次拉出过程中,以下结论正确的是(

A.两次导线框内感应电动势之比为1:9

B.两次导线框所受安培力的合力大小之比为1:9

C.两次外力的功率之比为1:9

D.两次导线框内产生的电热之比为1:9

5.一个带活塞的气缸内盛有一定量的气体,若此气体的温度随其内能的增大而升高,则(

A.将热量传给气体,其温度必升高

B.压缩气体,其温度可能降低

C.压缩气体,同时气体向外界放热,其温度必不变

D.压缩气体,同时将热量传给气体,其温度必升高

6.如图所示,能承受最大拉力为10N的细线OA与水平方向成45°角,能承受最大拉力为5N的细线OB水平,细线OC能承受足够大拉力,为使OA、OB均不被拉断,OC下端所悬挂的物体的最大重力是(

A.52N

C.5N 5NB.2

D.10N

7.如图所示,在匀强磁场中用绝缘丝线悬吊一带电小球,使小球在竖直平面内做简谐振动。A、C两点是其运动的最高点,O点是运动的最低点,不计空气阻力,当小球分别向左和向右经过最低点O时(

A.小球所受洛仑兹力相同

B.丝线所受拉力相同

C.小球的动能相同

D.小球的运动周期比没有磁场时要大

8.一理想变压器的原线圈连接一只交流电流表,副线圈接入电路的匝数可以通过滑动触头Q调节,如下图所示,在副线圈两输出端连接了定值电阻R0和滑动变阻器R,在原线圈上加一电压为U的交流电,则(

A.保持Q的位置不动,将P向上滑动时,电流表的读数变大

B.保持Q的位置不动,将P向上滑动时,电流表的读数变小

C.保持P的位置不动,将Q向上滑动时,电流表的读数变大

D.保持P的位置不动,将Q向上滑动时,电流表的读数变小

9.如图所示电路中,当滑动变阻器的触头向上滑动时,则(

A.电源的功率变小

B.电容器贮存的电量变小

C.电源内部消耗的功率变小

D.电阻R1消耗的电功率变小

10.如图所示,边长为L的正方形导线框质量为m,则距磁场H高处自由下落,其下边ab进入匀强磁场后,线圈开始作减速运动,直到其上边cd刚刚穿出磁场时,速度减为ab边进入磁场时的一半,磁场的宽度也为L,则线框穿越匀强磁场过程中发出的焦耳热为(

A.2mgL

B.2mgLmgH

C.2mgL3mgH4 1mgH4

D.2mgL【试题答案】

1.D

9.B

10.C

- 2223 -

高中物理知识点总结

ps总结所有知识点

高中物理静电场知识点总结

高中物理会考知识点总结

高中物理知识点总结:自由落体运动

高中物理电学知识点总结

高中物理机械能守恒定律知识点总结

高中物理学习方法 高中物理知识点总结

婚姻家庭法所有知识点总结

高中物理必修2知识点总结

《高中物理所有知识点总结.doc》
高中物理所有知识点总结
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载全文