无机化学

2020-03-03 06:14:26 来源:范文大全收藏下载本文

骨与牙釉质组织的生物矿化及磷酸钙材料仿生合成研究进展 摘要:骨和牙釉是典型的有机基质介导生成的生物矿化材料,其中的矿物相都属于以磷灰石为主的钙磷酸盐系统,但有机基质的不同使得晶体尺寸、形貌及排列方式迥异.本文综述了有关骨和牙釉组织的生物矿化研究,重点探讨对这些天然牛物矿化组织的分级结构、基质蛋白的自组装及调控矿化机理的认识.在此基础上,磷酸钙材料的仿生合成以期应用于硬组织的缺损修复或再生医学也是目前的重要研究内容.生物体控制形成矿物质的过程称之为生物矿化.生物矿化材料的综合性能比起传统工艺下人工合成的相同成分的材料有诸多优点.将生物矿化的基本原理应用于材料化学,并结合包括纳米技术在内的先进材料合成与制备工艺,形成了仿生材料科学与技术,受到材料科学、物理、化学、生物、医学、以及电子工业等众多领域的关注.骨和牙齿的形成是典型的有机基质模板介导下的生物矿化过程,即矿物相的形核、生长、晶型、取向、大小、形状、有序排列等特性及热力学与动力学过程的调控都是在有机基质模板的介导下完成的.骨和牙釉中的矿物相,化学组成上都属于以碳酸磷灰石为主的钙磷酸盐系统,但晶体尺寸、形貌及排列方式则完全不同,这正体现了有机基质模板的调控功能在矿化过程中的关键作用.本文综述了有关骨和牙釉组织的生物矿化研究,重点探讨目前对这些天然生物矿化组织的分级结构、基质蛋白的自组装及调控矿化机理的认识.在此基础上,磷酸钙材料的仿生制备以期应用于骨与牙齿的缺损修复或再生医学也是目前的重要研究内容.

关键词:骨;牙釉;生物矿化;仿生合成 1 骨组织的生物矿化 1.1骨的分级结构

天然牛物材料的一个显著而独特的特征是其具有从微观、介观直到宏观尺度的精巧而复杂的分级结构.骨的分级结构已经有若干种表述.在这一模型中,骨组织被视为以矿化的胶原纤维为基本单元分级组装而成的一类材料,不同结构层次上的骨材料都具有与其功能相适应的力学性能.

第一级结构为构成骨的基本组分:水、羟基磷灰石、胶原蛋白及其他基质成分.骨中的羟基磷灰石含有碳酸根,若占据羟基位置称为A型碳酸磷灰石,若取代磷酸根则称为B型碳酸磷灰石,后者为骨中主要的矿物相.骨矿晶体形状为不规则的片状,厚度为2—5nm,宽度约为20nm,长度通常为40~60nm.骨中的胶原蛋白主要为I型,其分子是由三股多肽链相互缠绕而形成的,具有三重螺旋结构,这种原胶原 分子以相互错开四分之一的阵列规则排列构成胶原纤维,并形成了孔区与重叠区相互交替的周期性结构,周期大约为67nm¨¨.胶原纤维提供了矿物沉积的模板,矿物在孔区择优形核.目前较普遍的观点认为,某些非胶原件蛋白结合在胶原纤维的孑L区,提供矿物形核的位点并规范矿物的取向,还可起到桥接矿物与胶原的作用.骨矿的磷灰石晶体具有择优取向,其晶体学c轴相互平行同时平行于胶原纤维的轴向.这样就构成了骨的摹本结构单元一矿化的胶原纤维,这是骨的第二级结构.这些矿化胶原纤维进一步集结成束,形成骨的第三级结构,其中沿长轴方向相互平行排列是最常见的方式.第四级结构包含了胶原纤维束的不同排布方式,如平行阵列、无序编织排布、层板状结构、放射状阵列等.平行阵列在平行纤维骨中最为常见,其结构上的各向异性使得其在增强特定方向上的力学性能时最为有效.无序编织排布常出现在胚胎骨或骨折愈合的早期,这种结构的骨组织生成速度较快但不具有承重的功能.层板状结构是板层骨的典型特征,具有由一系列骨板构成的层状结构,每个骨板中的胶原纤维相互平行排列,相邻骨板中的胶原纤维取向互成一定角度.放射状阵列是牙本质(与骨组织的组成较为接近)中的特征性结构.骨的第五级结构由称为哈佛氏系统或骨单位的圆柱状单元构成,其含有与板层骨类似的层板状结构,不同之处在于其多层骨板呈柱状布.个哈佛氏系统或骨单位一般是由4~20个同心骨板围绕哈佛氏管构成的,典型的骨单位的直径约为150—250斗m.就力学性能而言,尽管轴向的力学性能仍然高于径向的力学性能,但哈佛氏系统力学各向异性的程度已经大大减弱,这对于骨组织适应多种类型的力学环境是必要的.哈佛氏系统与骨组织的重塑活动密切相关.骨的最后两级结构涉及骨的组织学和解剖学,骨可被视为一种多孔材料,皮质骨的孔隙率约为5%一30%;松质骨是由板状或棒状的骨小梁相互交织构成的三维多孔网络,其孔隙率高达90%,骨小梁的排列受生物力学规律的控制,孔洞大小不一但彼此贯通,孔中充满骨髓组织.松质骨和皮质骨的表观密度(单位体积骨的质量)差别较大,松质骨O.1~O.99/cm3,皮质骨约为1.6~2.09/cm.

1.2胶原蛋白介导矿化的模型

骨的形成涉及成骨细胞的活动,成骨细胞合成分泌有机基质构成有序模板先于矿化发生,这一高度有序的胶原基质称为类骨质,类骨质随后矿化成骨.矿化既可发生于构造的胶原基质中,也可发生于细胞膜系统的基质囊泡中,其中胶原蛋白的有序自组装对矿物晶体的有序排列具有决定性作用.在胶原蛋白介导的矿化中,胶原纤维本身可提供钙化形核的功能点,早期观点认为胶原纤维的孔区可以直接引发磷酸钙盐的形核,目前较普遍的观点认为,胶原纤维主要是起结构框架的作用,其规则排列形成的周期性分布的孔区提供了矿物形核的模板,而结合在孔区内或附近的非胶原蛋白,尤其富含羧基或磷酸基团并具有B折叠构象的酸眭蛋白如骨涎蛋白等,则提供形核位点、控晶体取向并在矿物与胶原之间提供架桥.胶原蛋白分子富含甘氨酸、脯氨酸及羟脯氨酸,构成其超螺旋分子结构的三条多肽链均具有Gly—x—Y的特征氨基酸重复列.

胶原蛋白分子可简单视作直径1.23nm,长约300nm的棒状分子,一般认为五个分子平列,相互错开大约四分之一分子长度从而组装成为胶原微纤维幽J,具有孔隙区与重叠区交替分布的周期性有序结构.微纤维进一步组装成为胶原纤维和纤维束,相邻微纤维的孔隙区贯通形成沟槽以容纳磷灰石晶体在宽度方向上的长大.这种胶原蛋白介导矿化的模式是Landis等基于对矿化的火鸡肌腱的研究提出的.羟基磷灰石晶体首先形核于孔隙区,进而可生长扩展至重叠区,晶体c轴沿胶原纤维长轴择取向. 1.3骨基质蛋白与矿物相互作用的机理

基质蛋白与矿物晶体的相互作用,特别是有机一无机界面上的分子识别机理是生物矿化研究的核心内容之一.具体包括晶格几何特征的匹配、静电势相互作用、极性、立体化学因素、空间对称性和表面形貌等方面.

研究表明,胶原分子中大约11%的氨基酸残基含有羧基,在pH中性的溶液环境下,大部分可离解成为负电性基团,通过与钙离子的较强的亲和性而对矿化过程起到促发和控制的关键作用.此外,胶原超螺旋分子结构中的羰基也被认为可以与钙离子发生螯合作用,特别是在矿化过程的初期提供了矿物的形核位点.骨中的非胶原蛋白是矿物形核的关键调控因素.尽管含量很低,但多数属于酸性生物大分子,与钙离子较强的亲和性使得它们对矿物的形成具有促进和抑制的双重调节功能.蛋白分子中某些特定的二级结构构象如B折叠,可与骨矿晶体的特定晶面发生择优

相互作用,从而对矿物的形核及形貌施加影响旧引.骨钙蛋白是骨中含量最丰富的非胶原蛋白.Hoang等应用x射线衍射技术解析出了猪的骨钙蛋白的晶体结构,并提出了其与羟基磷灰石特定晶面相互作用的机理模型旧3|.猪的骨钙蛋白中包含三个a螺旋二级结构,进一步折叠成为一个独特的球状蛋白分子.其中a1螺旋上的三个^y一羧基谷氨酸残基(G1a17,G1a2l和Gla24),以及a2螺旋上的一个天冬氨酸残基(Asp30)可以螯合五个钙离子,这些钙离子的空间排布具有一定的周期性,模拟研究表明其与羟基磷灰石晶体特定晶面上的钙离子晶格点阵具有高度的匹配性.

2牙釉组织的生物矿化 2.1牙釉的分级结构

成熟牙齿牙冠表面约1~2mm的部分是牙釉质,其矿物相含量可达95%以上,是人体内最硬的组织.作为牙本质的保护层,牙釉质直接承受咀嚼食物时产生的压力及摩擦力,并且需要在口腔中复杂的生理环境下行使功能.牙本质的成分与骨相似,其韧性较好,在牙釉质下面可起到缓冲的作用,有效避免牙釉质的脆性断裂.有关牙釉质、牙本质及两种组织结合处的结构特征和力学性能是众多研究的主题.

牙釉从纳米至宏观尺度的分级结构牙釉中的羟基磷灰石晶体与骨中的晶体有很大的不同,成熟组织中矿物结晶度较高,晶体c轴择优生长,形貌为长带状,具有很高的长径比,厚度与宽度为30~60nm,长度可达毫米量级旧瑚J.发育初期的矿物晶体为细长带状,厚度只有几个纳米,宽度为30nm左右,由于晶体高度取向,平行排列并首尾相接,使得对单个晶体长度的测量存在不确定性,有观察表明其长度至少可达300nmL2sJ.牙釉中不含胶原纤维,发育早期的有机基质主要成分为釉原蛋白,含量较丰富的非釉原蛋白包括成釉蛋白、釉蛋白及两种蛋白酶组分.牙釉的生物矿化也是在有机基质的介导下进行,与骨组织的不同之处在于,伴随组织发育的进程,尤其是成熟期,有机质绝大部分被酶解而消失,矿物晶体在厚度和宽度方向上长大并紧密接触.除了牙齿表面的矿物可发生有限的溶解一再沉积的物理化学过程外,牙釉组织不经历生理重塑过程,缺损后也不能自行修复.

在微米尺度上,牙釉的典型结构是由称为釉柱和柱间釉质的两种结构单元相互交织构成的.单个釉柱的直径约为3~5斗m,由上述c轴取向的带状磷灰石晶体集结成束而构成,一排釉柱平行排列,呈现层状结构,进而由多层釉柱构成复杂而有序的结构.柱间釉质填充了釉柱间的空间,同样是由磷灰石晶体平行堆垛而成,但两种结构中的带状晶体长轴方向互成一定的角度.釉柱的排布方式在物种间也有差别,如在啮齿类动物的门齿牙釉中,相邻两层釉柱的走向互相交叉成一定角度,而人类的牙釉中,这种“交叉”结构存在于更大的尺度上,其中多层平行排列的釉柱构成一组釉柱群,两种走向的釉柱群交替排布,形成了称为“Hunter.Schreger带”的结构.这种不同层级上的交叉结构对于防止微小裂纹的破坏性扩展是非常重要的.此外,在牙冠表面及接近牙本质的界面处往往形成无釉柱型结构或者过渡型结构.

2.2釉原蛋白的超分子自组装

牙釉组织的复杂结构与成釉质细胞的活动和釉质基质蛋白的特性密切相关.釉柱的发生及规则排布是细胞直接调控的结果,而纳米结构的构建是通过以釉原蛋白为主要成分的釉质基质的介导完成的,尤其是磷灰石晶体的独特形貌、尺寸、择优取向及规则组装.

发育初期的牙釉组织中有机基质含量约占三分之一,其中90%为釉原蛋白.全序列釉原蛋白分子富含脯氨酸、谷氨酸、组氨酸及亮氨酸,主体疏水性较强,而羧基端的十几个氨基酸序列具有较高的亲水性并存在带电基团的富集.目前对该蛋白分子的二级结构和三级结构的认识还很有限,部分原因在于其具有较强的团聚特性.研究表明釉原蛋白可自组装成为直径几十个纳米的球状团聚体,这种“纳米球”结构被认为是发育期牙釉组织细胞外基质的基本结构单元蛋白中进一步发现该蛋白可通过分子的逐级组装形成多聚体,“纳米球”及“纳米球链”,直至具有双折射特性的微米尺度的条带状高级结构L30捌J,以这种“微条带”为矿化模板在体外构建了高度取向的磷灰石晶体的平行规则排布,形貌上与发育期的釉柱结构有一定的相似性Ⅲ],由此揭示了釉原蛋白自组装形成的“纳米球链”结构在牙釉矿化早期晶体的取向形核中起着重要调控功能∞1。.

理论计算和实验数据表明釉原蛋白单体具有不对称的双极性分子结构,其富集电荷的亲水羧基端保持较自由的结构,分子流体力学半径为2.2nm,单体分子通过疏水相互作用形成二聚体、三聚体及六聚体等,进而组装成为半径10~25nm的“纳米球”,以“纳米球”为单位可构建多种更高层级的结构,其中以lO~15个“纳米球”线性排列组装成的“纳米球链”结构可以使团聚体的体积最小化,因而对于釉原蛋白这样的疏水性分子在水溶液环境中保持稳定结构是较为有利的.“纳米球链”进一步的侧向结合最终组装成为微米级的条带结构,而釉原蛋白分子的双极性特性对这些结构的形成、稳定及有序化重构具有重要作用.目前多个研究小组正在致力于阐明上述釉原蛋白分级组装过程中的驱动力、分子内和分子间相互作用及影响因素.

2.3釉质基质蛋白与矿物的相互作用

釉原蛋白的亲水羧基端端肽对于分子与矿物相的相互作用非常重要.研究显示,该段氨基酸序列被酶解去除后的釉原蛋白易于形成较大的团聚体,而与磷灰石的亲和性则显著降低Ⅲ1.体外矿化的实验表明,该段序列对于从过饱和溶液中沉积的磷灰石晶体形成有取向的集束状结构是必不可少的p5|.在人类的釉原蛋白分子中,位于该片段的遗传缺陷可导致称之为釉质发育不全的疾病的产生∞引.根据生物矿化的一般性原则,该片段序列上带电基团的富集使其成为潜在的矿物形核功能位点,但相关机理目前还不清楚.釉原蛋白对矿物相的作用还体现在对晶体形貌的影响上.若干体外矿化实验均表明釉原蛋白可以增大磷酸八钙晶体的长径比,使原本片状的磷酸八钙晶体长成具有条带状的形貌,并且这种影响与蛋白剂量呈正相关旧7。38J,这种作用被认为是与釉原蛋白的疏水特性有关,导致蛋白与晶体不同晶面的相互作用产生差异,由于釉原蛋白在磷酸八钙晶体的(010)晶面上的强吸附使得晶体在对应晶向上的生长受到抑制,从而改变了晶体的形貌,釉蛋白是釉质基质中的酸性非釉原蛋白,与磷灰石有高度的亲和性,有可能在牙釉矿物的形核中起着关键作用,体外实验已经证明釉蛋白可以与釉原蛋白协同作用,促进磷灰石的形核旧引.另一种重要的非釉原蛋白——成釉蛋白具有钙结合位点,但其在矿化过程中所起的作用仍有待研究.

3磷酸钙系生物医用材料的仿生合成以羟基磷灰石为代表的磷酸钙陶瓷因为与骨骼和牙齿中矿物相的化学成分相近而成为备受重视的硬组织替代材料.这类生物活性材料具有优异的骨传导性能,并能够与骨组织形成化学键合,一般认为其键合机理是因为在材料表面形成一个生物活性的无细胞层,其中富含磷酸钙、粘多糖及糖蛋白,为胶原和骨矿的沉积提供了适宜环境.但传统生物活性陶瓷材料的一些内在弱点也限制了其应用,并促使人们发展先进的材料制备技术以获得性能更为优越的替代材料.基于对天然生物矿化过程和机理的认识,利用生物结构和系统,或者通过构建与生物结构和系统相类似的人工体系,模拟矿化过程,合成与天然生物矿化材料在成分、结构、过程控制、功能表达上均相似的人工材料,是仿生材料合成的一个重要研究内容.Mann将生物体内的矿化过程归纳为四个阶段.

近年来磷酸钙系生物医用材料的仿生制备研究已有很多.应用天然生物大分子及合成有机高分子材料作为模拟矿化的基质或模板,以构建结构上类似生物矿物的复合材料或复合薄膜材料.如stupp等合成了命名为有机磷灰石的生物材料H2躬1,通过短肽或聚电解质等控制磷灰石的形核及生长,获得纳米尺度的羟基磷灰石晶体,有机分子链段可嵌在矿物晶格中,尽管有机成分只有2%~3%的含量却可改善材料的机械性能,植入体内显示了优异的骨传导性能.该小组还合成了多肽双亲分子ⅢJ,一端为疏水的烷基链,另一端为具有带电基团的短肽序列,这种分子在特定条件下可自组装成为纳米纤维,形貌上模拟了胶原纤维,并且通过选择合适的短肽序列,在体外矿化的条件下可获得类似骨中矿物相择优取向生长的羟基磷灰石晶体.磷酸钙一胶原复合材料的仿生合成工作受到较大关注,特别是利用胶原自组装过程结合共沉积技术模拟矿化胶原纤维的分级结构.汪日志等通过共沉积方法获得了纳米磷灰石晶体在胶原基体内的均匀分布.张伟等使用不同配比的单体胶原和钙磷溶液,通过对pH值或温度的控制来引发胶原自组装成为纤维的过程,同时伴随纳米磷灰石晶体的形成,观察表明矿物的晶体学c轴择优取向平行于胶原纤维长轴新骨组织在其表面上的传导性生长,其表现与骨组织的生理性重塑过程具有组织学形态上的相似性.

天然生物硬组织中矿物相的纳米结构对于其力学性能和生物学功能极为重要,而有机分子或模板的调控是形成特殊纳米结构的关键.这一认识对目前新型生物医学材料的发展具有很大的指导意义.众多研究应用水热法、溶胶一凝胶法等结合有机分子或表面活性剂的模板作用能够可控制备多种纳米结构的磷灰石及生物活性玻璃m卸1.应用模拟体液进行的体外骨与牙齿是蕈要的生物矿化组织,并与人类健康息息相关.对骨和牙齿组织的深入研究,将进一步理解生物矿化过程的普遍机理,进而可提供材料合成的仿生策略,以制备与天然组织更为匹配的仿生生物医用材料,应用于人体硬组织缺损的修复.

参考文献:

[1]Mann s.Biomimetic Materials cheⅡIis町.New YorI【:John wiley ∞d son8.1995.

[2]Heuer A H,Fink D J,LaJ越a V J,et nz..Sb如,l凹,1992,255 (50鹌):1098-1105.

[3]stupp s I,Bmun P V.sc切肼,1997,277(53∞):1242一1248. [4]Shenton w,Pum D,sIeytr u B。甜以№fI‘陀,1997,鲳9(6醪1): 585-587.

[5]weiner s,wa印er H D.A肌Ⅱ.砌.肘嘶盯.&玉,1998,船:271. 298. [6]Rho J Y,Kuhn·spe“ng L,zi叽p∞P.坛斌.%Ph声.,1998, 20(3):92一102.

[7]MaIln s.Bi鲫ineralization:Princi“es明d concepts in Bioino呼“c Materials Chemistly.New Yorl【:Od酬Unive玛ity P慨s,2001. [8]Rey c,couin8 B,Goelll T,以耐.c础衫7缸w舰,1989,船 (3):157一164.

[9]kwenst锄H A,weiner s.orI Bi伽inemlizati∞.N洲York

无机化学

无机化学教学大纲

《无机化学》教案

中级无机化学

无机化学大学排名

无机化学学习心得

无机化学实验

无机化学心得

无机化学论文

无机化学实验心得

《无机化学.doc》
无机化学
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载全文