双语教学课件

2020-04-18 来源:教学课件收藏下载本文

推荐第1篇:神经解剖学双语教学课件

神经解剖学双语教学课件

1. 感觉器官Sensory organs.ppt

2. 神经系统总论、脊髓Spinal cord.ppt

3. 脑干Brain stem.ppt

4. 小脑、间脑Cerebellum.ppt

5. 端脑

6. 神经传导通路

7. 脑和脊髓的被膜和血管

8. 脊神经

9. 脑神经 10.

11. 内脏神经、内分泌系统 帕金森病

推荐第2篇:《物理双语教学课件》Chapter 9 Oscillations 振动

Chapter 9 Oscillations

We are surrounded by oscillations─motions that repeat themselves.(1).There are swinging chandeliers, boats bobbing at anchor, and the surging pistons in the engines of cars.(2).There are oscillating guitar strings, drums, bells, diaphragms in telephones and speaker systems, and quartz crystals in wristwatches.(3).Le evident are the oscillations of the air molecules that transmit the sensation of sound, the oscillations of the atoms in a solid that convey the sensation of temperature, and the oscillations of the electrons in the antennas of radio and TV transmitters.Oscillations are not confined to material objects such as violin strings and electrons.Light, radio waves, x-rays, and gamma rays are also oscillatory phenomena.You will study such oscillations in later chapters and will be helped greatly there by analogy with the mechanical oscillations that are about to study here.Oscillations in the real world are usually damped; that is, the motion dies out gradually, transferring mechanical energy to thermal energy by the action of frictional force.Although we cannot totally eliminate such lo of mechanical energy, we can replenish the energy from some source.

1 9.1 Simple Harmonic Motion 1.The figure shows a sequence of “snapshots” of a simple oscillating system, a particle moving repeatedly back and forth about the origin of the x axis.2.Frequency: (1).One important property of oscillatory motion is its frequency, or number of oscillations

that

are completed each second.(2).The symbol for frequency is f, and (3) its SI unit is hertz (abbreviated Hz), where 1 hertz = 1 Hz = 1 oscillation per second = 1 s-1.3.Period: Related to the frequency is the period T of the motion, which is the time for one complete oscillation (or cycle).That is T1f.4.Any motion that repeats itself at regular intervals is called period motion or harmonic motion.We are interested here in motion that repeats itself in a particular way.It turns out that for such motion the displacement x of the particle from the origin is given as a function of time by

x(t)xmcos(t), in which xm,,and

are constant.The motion is called simple harmonic motion (SHM), the term that means that the periodic motion is a sinusoidal of time.5.The quantity

xm, a positive constant whose value depends on how the motion was started, is called the amplitude of the motion; the subscript m stands for maximum displacement of the particle in either direction. 6.The time-varying quantity

(t)

is called the phase of the motion, and the constant  is called the phase constant (or phase angle).The value of  depends on the displacement and velocity of the particle at t=0.7.It remains to interpret the constant .The displacement

x(t)

must return to its initial value after one period T of the motion.That is,

x(t)

must equal

0x(tT) for all t.To simplify our analysis, we put .So we then have xmcostxmcos[(tT)].The cosine function first repeats itself when its argument (the phase) has increased by that we must have 22fT2 rad, so

(tT)t2orT2.It means .The quantity  is called the angular frequency

of the motion; its SI unit is the radian per second.

8.The velocity of SHM: (1).Take derivative of the displacement with time, we can find an expreion for the

3 velocity of the particle moving with simple harmonic motion.That is, v(t)dx(t)xmsin(t)vmcos(t/2).(2).The dtpositive quantity

vmxm in above equation is called the velocity amplitude.

9.The acceleration of SHM: Knowing the velocity for simple harmonic motion, we can find an expreion for the acceleration of the oscillation particle by differentiating once more.Thus we have

a(t)dv(t)vmsin(t/2)amcos(t)dtThe positive quantity

amvm2xm is called the acceleration

a(t)2x(t)amplitude.We can also to get , which is the hallmark of simple harmonic motion: the acceleration is proportional to the displacement but opposite in sign, and the two quantities are related by the square of the angular frequency.

9.2 The Force Law For SHM 1.Once we know how the acceleration of a particle varies with time, we can use Newton’s second law to learn what force

4 must act on the particle to give it that acceleration.For simple harmonic motion, we have

Fma(m2)xkx.This result-a force proportional to the displacement but opposite in sign-is something like Hook’s law for a spring, the spring constant here being km2.2.We can in fact take above equation as an alternative definition of simple harmonic motion.It says: Simple harmonic motion is the motion executed by a particle of ma m subject to a force that is proportional to the displacement of the particle but opposite in sign.3.The block-spring system forms a linear simple harmonic oscillator

(linear oscillator for short), where linear indicates that F is proportional to x rather than to some other power of x.(1).The angular frequency  of the simple harmonic motion of the block is oscillator is

9.3 Energy in Simple Harmonic Motion 1.The potential energy of a linear oscillator depends on how much the spring is stretched or compreed, that is, on

k/m.(2).The period of the linear T2m/k.

x(t).We have U(t)1212kxkxmcos2(t).222.The kinetic energy of the system depends on haw fast the block is moving, that is on

K(t)v(t).We have 1212mvm2xmsin2(t)22

1k212m()xmsin2(t)kxmsin2(t)2m23.The mechanical energy is

EUK121212kxmcos2(t)kxmsin2(t)kxm 222The mechanical energy of a linear oscillator is indeed a constant, independent of time.

9.4 An Angular simple Harmonic Oscillator 1.The figure shows an angular version of a simple harmonic oscillator; the element of springine or elasticity is aociated with the twisting of a suspension wire rather than the extension and compreion of a spring as we previously had.The device is called a torsion pendulum, with torsion referring to the twisting.2.If we rotate the disk in the figure from its rest position and release it, it will oscillate about that position in angular simple harmonic motion.Rotating the disk through an angle

6  in either direction introduce a restoring torque given by Here  (Greek kappa) is a constant, called the .torsion constant, that depends on the length, diameter, and material of the suspension wire.3.From the parallelism between angular quantities and linear quantities (give a little more explanation), we have

T2I

for the period of the angular simple harmonic oscillator, or torsion pendulum.

9.5 Pendulum We turn now to a cla of simple harmonic oscillators in which the springine is aociated with the gravitational force rather than with the elastic properties of a twisted wire or a compreed or stretched spring.1.The Simple Pendulum (1).We consider a simple pendulum, which consists of a particle of ma m (called the bob of the pendulum) suspended from an un-stretchable, male string of length L, as in the figure.The bob is free to swing back and forth in the plane of the page, to the left and right of a vertical line

7 through the point at which the upper end of the string is fixed. (2).The forces acting the particle, shown in figure (b), are its weight and the tension in the string.The restoring force is the tangent component of the weight

mgsin, which is always acts opposite the displacement of the particle so as to bring the particle back toward its central location, the equilibrium (0).We write the restoring force as Fmgsin, where the minus sign indicates that F acts opposite the displacement. (3).If we aume that the angle is small, the

sin is very nearly equal to  in radians, and the displacement s of the particle measured along its arc is equal to FmgmgL.Thus, we have

smg()s.Thus if a simple pendulum swings LLthrough a small angle, it is a linear oscillator like the block-spring oscillator.

(4).Now the amplitude of the motion is measure as the angular amplitude m, the maximum angle of swing.The period of

a

simple

pendulum

is T2m/k2m/(mg/L)2L/g.This result hods only if the angular amplitude m is small.2.The Physical Pendulum

(1).The figure shows a generalized

8 physical pendulum, as we shall call realistic pendulum, with its weight mg

acting at the center of ma C.

(2).When the pendulum is displaced through an angle  in either direction from its equilibrium position, a restoring torque appears.This torque acts about an axis through the suspension point O in the figure and has the magnitude (mgsin)(h).The minus sign indicates that the torque is a restoring torque, which always acts to reduce the angle  to zero.

(3).We once more decide to limit our interest to small amplitude, so that (mgh).

sin.Then the torque becomes

T2I/mgh, (4).Thus the period of a physical pendulum is when m is small.Here I is the rotational inertia of the pendulum.

(5).Corresponding to any physical pendulum that oscillates about a given suspension point O with period T is a simple pendulum of length L0 with the same period T.The point along the physical pendulum at distance L0 from point O is called the center of oscillation of the physical pendulum for the given suspension point.3.Measuring g: We can use a physical pendulum to measure

9 the free-fall acceleration g through measuring the period of the pendulum.

9.6 Simple Harmonic Motion and Uniform circular Motion 1.Simple harmonic motion is the projection of uniform circular motion on a diameter of the circle in which the latter motion occurs.2.The figure (a) gives an example.It shows a reference moving circular particle in

P’

uniform with motion angular speed  in a reference circle.The radius xm of the circle is the magnitude of the particle’s position vector.At any time t, the angular position of the particle is t.3.The projection of particle P’ onto the x axis is a point P.The projection of the position vector of particle P’ onto the x axis

10 gives the location x(t) of P.Thus we find

x(t)xmcos(t).Thus if reference particle P’ moves in uniform circular motion, its projection particle P moves in simple harmonic motion.4.The figure (b) shows the velocity of the reference particle.The magnitude of the velocity is xm, and its projection on the x axis is

v(t)xmsin(t).

The minus sign appears because the velocity component of P points to the left, in the direction of decreasing x.5.The figure (c) shows the acceleration of the reference particle.The magnitude of the acceleration vector is projection on the x axis is

a(t)2xmcos(t).

2xm

and its 6.Thus whether we look at the displacement, the velocity, or the acceleration, the projection of uniform circular motion is indeed simple harmonic motion.

9.7 Damped Simple Harmonic Motion A pendulum will swing hardly at all under water, because the water exerts a drag force on the pendulum that quickly eliminates the motion.A pendulum swinging in air does better, but still the

11 motion dies out because the air exerts a drag force on the pendulum, transferring energy from the pendulum’s motion.1.When the motion of an oscillator is reduced by an external force, the oscillator and its motion are said to be damped.An idealized example of a damped oscillator is shown in the figure: a block with ma m oscillates on a spring with spring constant k.From the ma, a rod extends to a vane (both aumed male) that is submerged in a liquid.As the vane moves up and down, the liquid exerts an inhibiting drag force on it and thus on the entire oscillating system.With time, the mechanical energy of the block-spring system decreases, as energy is transferred to thermal energy of the liquid and vane.2.Let us aume that the liquid exerts a damped forceFd that is

proportional in magnitude to the velocity v of the vane and

block.Then

Fdbv,

where b is a damped constant that depends on the characteristics of both the vane and the liquid and has the SI unit of kilogram per second.The minus sign indicates that

Fd

opposes the motion.

3.The total force acting on the block is Fkxbvkxbdx.

dtSo we have equation

d2xdxm2bkx0,

dtdtwhose solution is x(t)xmebt/2mcos(\'t), where \', the angular frequency of the 12 damped oscillator, is given by \'kb2m4m2.4.We can regard the displacement of the damped oscillator as a cosine function whose amplitude, which is decreases with time.5.The mechanical energy of a damped oscillator is not constant but decreases with time.If the damping is small, we can find E(t)

xmebt/2m, gradually by replacing

xm

with

xmebt/2m,

the amplitude of the

E(t)12bt/mkxme, which 2damped oscillation.Doing so, we find tells us that the mechanical energy decreases exponentially with time.

9.8 Forced Oscillations and Resonance 1.A person swing paively in a swing is an example of free oscillation.If a kind friend pulls or pushes the swing periodically, as in the figure, we have forced, or driven, oscillations.There are now two angular frequencies with which to deal with: (1) the natural angular frequency  of the system, which is the angular frequency at which it would oscillate if it were suddenly disturbed and then left to

13 oscillate freely, and (2) the angular frequency d of the external driving force.2.We can use the right figure to represent an idealized forced simple harmonic oscillator if we allow the structure marked “rigid support” to move up and down at a variable angular frequency d.A forced oscillator oscillates at the angular frequency d of driving force, and its displacement is given by

x(t)xmcos(dt), where xm

is the amplitude of the oscillations.How large the displacement amplitude and .

3.The velocity amplitude

vm xm

is depends on a complicated function of d

of the oscillations is easier to describe: it is greatest when d, a condition called resonance.Above equation is also approximately the condition at which the displacement amplitude

xm

of oscillations is greatest.

14 The figure shows how the displacement amplitude of an oscillator depends on the angular frequency

d of the driving force, for three values of the damped coefficient b.4.All mechanical structures have one or more natural frequencies, and if a structure is subjected to a strong external driving force that matches one of these frequencies, the resulting oscillations of structure may rupture it.Thus, for example, aircraft designers must make sure that none of the natural frequencies at which a wing can vibrate matches the angular frequency of the engines at cruising speed. 15

推荐第3篇:《物理双语教学课件》Chapter 10 Waves 波动

Chapter 10 Waves

10.1 Types of Waves 1.Mechanical waves: These waves are most familiar because we encounter them almost constantly; common examples include water waves, sound waves, and seismic waves.All these waves have certain central features: they are governed by Newton’s laws, and they can exist only within a material medium, such as water, air, and rock.2.Electromagnetic waves: These waves are le familiar, but you use them constantly; common examples include visible and ultraviolet light, radio and television waves, microwaves, x-rays, and radar waves.These waves require no material medium to exist.Light waves from stars, for example, travel through the vacuum of space to reach us.All electromagnetic waves travel through a vacuum at the same speed c, given by c=299,792,458m/s.3.Matter waves: Although these waves are commonly used in modern technology, their type is probably very unfamiliar to you.Electrons, protons, and other fundamental particles, and even atoms and molecules, travel as waves.Because we commonly think of these things as constituting matter, these

1 waves are called matter waves.4.Much of what we discu in this chapter applies to waves of all kinds.However, for specific examples we shall refer to mechanical waves.

10.2 Transverse and Longitudinal Waves 1.Transverse wave

(1).A wave sent along a stretched, taut string is the simplest mechanical wave.If you give one end of a stretched string a single up-and-down jerk, a wave in the form of a single pulse travels along the string, as in the figure.This pulse and its motion can occur because the string is under tension.When you pull your end of the string upward, it begins to pull upward on the adjacent section of the string via tension between the two sections.As the adjacent section moves upward, it begins to pull the next section upward, and so on.Meanwhile, you have pulled down on your end of the string.So, as each section moves upward

2 in turn, it begins to be pulled back downward by neighboring sections that already on the way down.The net result is that a distortion in the string’s shape (the pulse) moves along the string at some velocity v.

(2).If you move your hand up and down in continuous simple harmonic motion, a continuous wave travels along the string at velocity v.Because the motion of your hand is a sinusoidal function of time, the wave has a sinusoidal shape at any given instant, as in the figure (b).That is, the wave has the shape of a sine curve or a cosine curve.

(3).We consider here only an “ideal” string, in which no friction-like forces within cause the wave to die out as it travels along the string.In addition, we aume that the string is so long that we need not consider a wave rebounding from the far end.

(4).One way to study the waves of the figure is to monitor the wave’s form (shape of wave) as it moves to the right.Alternatively, we can monitor the motion of an element of the string as the element oscillates up and down while the wave paes through it.We would find that the displacement of every such oscillating string element is perpendicular to the direction of travel of the wave, as indicated in the figure.This

3 motion is said to be transverse, and the wave is said to be a transverse wave.2.Longitudinal wave: (1).The right figure shows how a sound wave can be produced by a piston in a long, air filled pipe.If you suddenly move the piston rightward and then leftward, you can send a pulse of sound along the pipe.The rightward motion of the piston moves the elements of air next to it rightward, changing the air preure there.The increased air preure then pushes rightward on the element of air somewhat farther along the pipe.Once they have moved rightward, the elements move back leftward.Thus the motion of the air and the change in air preure travel rightward along the pipe as a pulse.

(2).If you push and pull on the piston in simple harmonic motion, as is being done in the figure, a sinusoidal wave travels along the pipe.Because the motion of the elements of air is parallel to the direction of the wave’s travel.The motion is said to be longitudinal wave.

3.Both a transverse wave and a longitudinal wave are said to be

4 traveling waves because the wave travels from one point to another, as from one end of the string to the other end or from one end of the pipe to the other end.Note that it is the wave that moves between the two points and not the material (string or air) through which the wave moves.

10.3 Wavelength and Frequency 1.Introduction

(1).To completely describe a wave on a string, we need a function that gives the shape of the wave.This means that we need a relation in the form

yh(x,t), in which y is the transverse displacement of any string element as a function h of the time t and the position x of the element along the string.In general, a sinusoidal shape like the wave can be described with h being either a sine function or a cosine function; both give the same general shape for the wave.In this chapter we use the sine function.

(2).For a sinusoidal wave, traveling toward increasing values of x, the transverse displacement y of a string element at position x at time is given by

y(x,t)ymsin(kxt), here

ym is the amplitude of the wave; the subscript m stands for maximum, because the amplitude is the magnitude of the maximum

5 displacement of the string element in either direction parallel to the y axis.The quantities k and  are constants whose meanings are about to discu.The quantity phase of the wave.2.Wavelength and angular Wave Number (1).The figure shows how the transverse

kxt

is called the displacement y varies with position x at an instant, arbitrarily called t=0.That is, the figure is a “snapshot” of the wave at that instant.With t=0, the wave equation becomes

y(x,0)ymsinkx.

The Figure (a) is a plot of this equation; it shows the shape of the actual wave at time t=0. (2).The wavelength

 of a wave is the distance between repetitions of the wave shape.A typical wavelength is marked in figure (a).By definition, the displacement y is the same at both ends of this wavelength, that is, at ymsinkx1ymsink(x1).

xx1

and

xx1.

Thus

2(3).A sine function begins to repeat itself when its angle is increased by 2 rad; so we have

k.We call k the angular wave number of the wave; its SI unit is the radian per meter.

6 3.Period, angular frequency, and frequency:

(1).The figure (b) shows how the displacement y varies with time t at a fixed position, taken to be x=0. If you were to monitor the string, you would see that the single element of the string at that position moves up and down in simple harmonic motion with x=0:

y(0,t)ymsin(t)ymsin(t).The figure (b) is a plot of this equation; it does not show the shape of the wave. (2).We define the period of oscillations T of a wave to be the time interval between repetitions of the motion of an oscillating string element.A typical period is marked in the figure (b).We have ymsint1ymsin(t1T).

2T(3).This can be true only if

.We call  the angular frequency of the wave; its SI unit is the radian per second. (4).The frequency f of the wave is defined as 1/T and is related to the angular frequency by

f1T2.This frequency f is a number of oscillations per unit time-made by a string element as the wave moves through it, and f is usually measured in hertz or its multiples.

10.4 The Speed of a Traveling wave 1.The figure shows two snapshots of the wave

7 taken a small time interval t apart.The wave is traveling in the direction of increasing x, the entire wave pattern moving a distance ratio x/t xin

that direction during the interval t.The (or, in the differential limit, dx/dt) is the wave speed v.How can we find its value? 2.As the wave moves, each point of the moving wave form retains its displacement y.For each such point, the argument of the sine function must be a constant: dxdx2/T0vfdtdtk2/Tkxtaconstant.3.To find wave speed v, we take the derivative of the equation, get k.The equation tells us that the wave speed is one wavelength per period.4.The wave equation

y(x,t)ymsin(kxt) describes a wave moving in the direction of increasing x.(1).We can find the equation of a wave traveling in the opposite direction by replacing t with –t.(2).This corresponds to the condition kxtaconstant.(3).Thus a wave traveling toward

y(x,t)ymsin(kxt).

dxdtkdecreasing x is described by the equation (4).Its velocity is

v.5.Consider now a wave of generalized shape, given by y(x,t)h(kxt),

where h represents any function, the sine function being one poibility.Our analysis above shows that all waves in which the variables x and t enter in the

8 combination kxt are traveling waves.Further more, all

y(x,t)axbt

y(x,t) traveling waves must be the form above.Thus represents a poible traveling wave.The function sin(ax2bt), on the other hand, does not represent a traveling wave.

6.Wave Speed on a Stretched String

(1).The speed of a wave is related to the wave’s wavelength and frequency, but it is set by the medium.If a wave is through a medium such as water, air, steel, or a stretched string, it must cause the particles of that medium to oscillate as it paes.For that happen, the medium must poe both inertia and elasticity.These two properties determine how fast the wave can travel in the medium.And conversely, it should be poible to calculate the speed of the wave through the medium in terms of these properties.

(2).We can derive the speed from Newton’s second law as v, where  is the linear density of the string, and  the tension in the string.

(3).The equation tells us that the speed of a wave along a stretched ideal string depends only on the characteristics of the string and not on the frequency of the wave.

9 10.5 Energy and Power of a Traveling String Wave When we set up a wave on a stretched string, we provide energy for the motion of the string.As the wave moves away from us, it transports that energy as both kinetic energy and elastic potential energy.Let us consider each form in turn.1.Kinetic energy: An element of the string ma dm, oscillating transversely in simple harmonic motion as the wave paes through it, has kinetic energy aociated with its transverse velocity u: dK11y1dmu2dm()2(dx)[ymcos(kxt)]2.22t2

(1).So when the element is rushing through its y=0 position, its transverse velocity-and thus its kinetic energy-is a maximum. (2).When the element is at its extreme position y=ym, its transverse velocity-and thus again its kinetic energy-is zero.2.Elastic potential energy: To send a sinusoidal wave along a previously straight string, the wave must necearily stretch the string.As a string element of length dx oscillates transversely, its length must increase and decrease in a periodic way if the string element is to fit the sinusoidal wave’s form.Elastic potential energy is aociated with these length changes, just as for a spring.

(1).When the string element is at its y=ym position, its length has its normal undisturbed value dx, so its elastic potential

10 energy is zero.

(2).However, when the element is rushing through its y=0 position, it is stretched to its maximum extent, and its elastic potential energy then is a maximum.3.In the snapshot of the right figure, the regions of the string at maximum displacement have

no energy, and the regions at zero displacement have maximum energy.4.The rate of energy transmiion:

(1).The rate at which kinetic energy is carried along by the wave can be got from the equation as

dK12v2ymcos2(kxt).dt2(2).The average rate at which kinetic energy is transported is (11dK22cos2(kxt)v2ym) v2ym, 24dtwhere an overhead bar means an average value of the quantity.

(3).Elastic potential energy is also carried along with the wave, and at the same average rate given by above equation.5.The average power, which is the average rate at which energy of both kinds is transmitted by the wave, is then P2(dK12)v2ym.The dependence of the average power of a dt2 11 wave on the square of its amplitude and also on the square of its angular frequency is a general result, true for waves of all types.

10.6 The Principle of Superposition for Waves It often happens that two or more waves pa simultaneously through the same region.When we listen to a concert, for example, sounds from many instruments fall simultaneously on our eardrums.

1.Suppose that two waves travel simultaneously along the same stretched string.Let

y1(x,t) and

y2(x,t) be the displacements that the string would experience if each wave acted alone.The displacement of the string when both waves act is then y\'(x,t)y1(x,t)y2(x,t), the sum being an algebraic sum.This summation of displacements along the string means: Overlapping waves algebraically add to produce a resultant wave.This is another example of the principle of superposition, which says that when several effects occur simultaneously, their net effect is the sum of the individual effects. 12 2.The right figure shows a sequence of snapshots of two pulses traveling in opposite directions on the same stretched string.When the pulses overlap, the resultant pulse is their sum.Moreover, each pulse moves through the other, as if the other were not present: Overlapping waves do not in any way alter the travel of each other.3.Fourier analysis (1) French mathematician Jean Baptiste Fourier (1786-1830) explained how the principle of superposition can be used to analyze non-sinusoidal wave forms.He showed that any wave’s form can be represented as the sum of a large number of sinusoidal waves, of carefully chosen frequencies and amplitudes.

(2) English physicist Sir James Jean expreed it well: [Fourier’s] theorem tells us that every curve, no matter what its nature may be, or in what way it was originally obtained, can be exactly reproduced by superposing a sufficient number of simple

13 harmonic [sinusoidal] curves-in brief, every curve can be built up by piling up waves. (3) The figure shows an example of a Fourier series, as such sums are called.The saw-tooth curve in figure (a) shows the variation with time (at position x=0) of the wave we wish

to represent.The Fourier series that represents it can be shown to be which

y(t)111sin2t sin3t, 23sintin 2/T, where T is the period of the saw-tooth curve.The green curve of figure (a), which represents the sum of the first six terms of above equation, matches the saw-tooth curve rather well.Figure (b) shows these six terms separately.By adding more terms, we can approximate the saw-tooth curve as closely as we wish.

(4) This is why we spent so much time analyzing the behavior of a sinusoidal wave.When we understand that, Fourier’s theorem will open the door to all other wave shape.

14 10.7 Interference of Waves Suppose we send two sinusoidal waves of the same wavelength and amplitude in the same direction along a stretched string.The superposition principle applies.What resultant wave does it predict for the string? 1.The resultant wave depends on the extend to which the waves are in phase with respect to each other, that is, how much one wave form is shifted from the other wave form.

(1).If the waves are exactly in phase (so that the peaks and valleys of one are exactly aligned with those of the other without any shift), they combine to double the displacement of either wave acting alone.

(2).If they are exactly out of phase (the peaks of one are exactly aligned with the valleys of the other), they cancel everywhere and the string remains straight.

(3).We call this phenomenon of combining and canceling of waves interference, and the waves are said to interfere. 2.Let one wave traveling a long a stretched string be given by y1(x,t)ymsin(kxt) and another, shifted from the first, by .The waves have the same angular y2(x,t)ymsin(kxt)frequency , the same angular wave number k, and the same amplitude ym, they travel in the same direction, that increasing x,

15 with the same speed.They differ only by a constant angle , which call the phase constant.These waves are said to be out of phase by  or have a phase difference of , or one wave is said to be phase-shifted from the other by .3.From the principle of superposition, the combined wave has displacement:

y\'(x,t)y1(x,t)y2(x,t)ymsin(kxt)ymsin(kxt)11[2ymcos()]sin(kxt)22

The resultant wave is thus also a sinusoidal wave traveling in the direction of increasing x with its phase constant being and its amplitude being

y\'m2ymcos(/2)/2

.It means if two sinusoidal waves of the same amplitude and wavelength travel in the same direction along a stretched string, they interfere to produce a resultant sinusoidal wave traveling in that direction. (1).If Then 0 rad, the two combining waves are exactly in phase.

So the amplitude of the resultant y\'(x,t)2ymsin(kxt).wave is twice the amplitude of either combining wave.Interference that produces the greatest poible amplitude is called fully constructive interference. (2).If , the combining waves are exactly out of phase.We

y\'(x,t)0.Now, although we then have for all values of x and t, sent two waves along the string, we see no motion of the string

16 at all.This type of interference is called fully destructive interference.

(3).When interference is neither fully constructive nor fully destructive, it is called intermediate interference.The amplitude of the resultant wave is then intermediate between 0 and 2ym.

10.8 Phasors 1.We can represent a string wave vectorially with a phasor.In eence, a phasor is a vector that has a magnitude equal to the amplitude of the wave and that rotates around an origin; the angular speed of the phasor is equal to the angular frequency  of the wave.For example, the wave y1(x,t)ym1sin(kxt)

is represented by the phasor in figure (a).

ym1 The magnitude of the phasor is the amplitude of the wave.As the phasor rotates around the origin at angular speed , its projection y1 on the vertical axis varies sinusoidally, from a ym1 maximum of through zero to a minimum of

ym1.

This variation corresponds to the sinusoidal variation in the

17 displacement y1

of any point along the string as the wave paes through it.2.When two waves travel along the same string in the same direction, we can represent them and their resultant wave in a phasor diagram.The phasor in figure (b) represent the wave given by y1(x,t)ym1sin(kxt)

and a second wave given by y2(x,t)ym2sin(kxt).The angle between the phasors in the figure (b) is equal to the phase constant .3.Because wave

y1

and

y2 have the same angular wave number k and angular frequency , we know that their resultant is of the form

y\'(x,t)y\'msin(kxt),

where

y\'m

is the amplitude of the resultant wave and To find the value of

y\'m

 is its phase constant.

the two

and , we vectorially add phasors at any instant during their rotation, as in figure ©.The magnitude of the vector sum equals the amplitude angle between the vector sum and the phasor for phase constant

10.9 Standing Waves We have discued two sinusoidal waves of the same wavelength and amplitude traveling in the same direction along a stretched string.What if they travel in opposite direction? We

y\'m.

The

y1

equals the .can again find the resultant wave by applying the superposition principle.1.Above figure suggests the situation graphically.It shows the two combining waves, one traveling to the left in figure (a), the other to the right in figure (b).Figure (c) shows their sum, obtained by applying the superposition principle graphically.The outstanding feature of the resultant wave is that there are places along the string, called nodes, where the string is permanently at rest.Four such nodes are marked by dots in the figure (c).Halfway between adjacent nodes are anti-nodes, where the amplitude of the resultant wave is a maximum.Wave patterns such as that of the figure (c) are called standing waves because the wave pattern do not move left or right: the locations of the maxima and minima do not change.If two sinusoidal waves of the same amplitude and wavelength travel in opposite directions along a stretched string, their interference with each other produces a standing wave.2.To analyze a standing wave, we represent the two combining

19 waves with equations

y1(x,t)ymsin(kxt) and y2(x,t)ymsin(kxt).

The principle of superposition gives, for

y\'(x,t)y1(x,t)y2(x,t)[2ymsinkx]cost.This the combined wave, is not traveling wave but a standing wave.3.The quantity

2ymsinkx

in the brackets of the equation can be viewed as the amplitude of oscillation of the string element that is located at position x.However, since an amplitude is always positive and sinkx

can be negative, we take the absolute value

to be the amplitude at x.of the quantity 2ymsinkx

4.In a traveling sinusoidal wave, the amplitude of the wave is the same for all string elements.That is not true for a standing wave, in which the amplitude varies with position. (1).The amplitude is zero for values of kx that give Those values are we get xkxn,forn0,1,2,.

sinkx0.k2/Substituting , nn,k2forn0,1,2,, as the positions of zero amplitude-the nodes-for the standing wave.Note that adjacent nodes are separated by

/2, half a wavelength.

(2).The amplitude of the standing wave has a maximum value of 2ym, which occurs for values of kx that give sinkx1.Those 1351kx,,,(n),2222forn0,1,2,forn0,1,2,.In other word, values are 1x(n),22, as the position of maximum amplitude-the anti-nodes-of the standing wave.The anti-nodes

20 are one-half wavelength apart and are located halfway between pairs of nodes.5.Reflections at a Boundary: See the figure.10.11 Standing Waves and Resonance 1.If the left end of a stretched string is oscillated sinusoidally with the other end fixed, the oscillation sends a continuous traveling wave rightward along the string.The frequency of the wave is that of the oscillation.The wave reflects at the fixed end and travels leftward back through itself.The right-going wave

and

the left-going wave then interfere with each other.2.For certain frequencies, the interference produces a standing wave pattern (or oscillation mode) with nodes and large anti-nodes like those in the figure.Such a standing wave is said to be produced at resonance, and the string is said to resonate at 21 these certain frequencies, called resonant frequencies.

3.If the string is oscillated at some frequency other than a resonance frequency, a standing wave is not set up.Then the interference of the right-going wave and the left-going wave results in only small oscillations of the string.4.Suppose the length of the string is L, and the string is somehow made to oscillate at a resonance frequency to set up a standing wave pattern.Since each end of the string is fixed, there must be a node at each end.The patterns that meet this requirement are that

Ln2or2Lnforn1,2,3,, and the resonance frequencies that correspond to these wavelengths are fvnv,2Lforn1,2,3,, here v is the speed of the traveling waves on the string.5.Above equation tells us that the resonant frequencies are integer multiples of the lowest resonant frequency, which corresponds to

n1.

f/2L,

The oscillation mode with that lowest frequency is called the fundamental mode or the first harmonic.The collection of all poible oscillation modes is called the harmonic series, and n is called the harmonic number of nth harmonic. 22

推荐第4篇:《物理双语教学课件》Chapter 6 Rotation 定轴转动

Chapter 6 Rotation In this chapter, we deal with the rotation of a rigid body about a fixed axis.The first of these restrictions means that we shall not examine the rotation of such objects as the Sun, because the Sun-a ball of gas-is not a rigid body.Our second restriction rules out objects like a bowling ball rolling down a bowling lane.Such a ball is in rolling motion, rotating about a moving axis.

6.1 The Rotational Variables 1.Translation and Rotation: The motion is the one of pure translation, if the line connecting any two points in the object is always parallel with each other during its motion.Otherwise, the motion is that of rotation.Rotation is the motion of wheels, gears, motors, the hand of clocks, the rotors of jet engines, and the blades of helicopters.2.The nature of pure rotation: The right figure shows a rigid body of arbitrary shape in pure rotation around a fixed axis, called the axis of rotation or the rotation axis.

(1).Every point of the body moves in a circle whose center

1 lies on the axis of the rotation.

(2).Every point moves through the same angle during a particular time interval.3.Angular position: The above figure shows a reference line, fixed in the body, perpendicular to the axis, and rotating with the body.We can describe the motion of the rotating body by specifying the angular position of this line, that is, the angle of the line relative to a fixed direction.In the right figure, the angular position

sr is measured relative to the positive direction of the x axis, and  is given by

(radianmeasure).

Here s is the length of the arc (or the arc distance) along a circle and between the x axis and the reference line, and r is a radius of that circle.An angle defined in this way is measured in radians (rad) rather than in revolutions (rev) or degree.They have relations

1rev360o2r2rad r4.If the body rotates about the rotation axis as in the right figure, changing the angular position of the reference

2 line from 1 to 2, the body undergoes an angular displacement

given by 21

The definition of angular displacement holds not only for the rigid body as a whole but also for every particle within the body.The angular displacement

 of a rotating body can be either positive or negative, depending on whether the body is rotating in the direction of increasing  (counterclockwise) or decreasing  (clockwise).5.Angular velocity

(1).Suppose that our rotating body is at angular position

1

at time t1 and at angular position 2 at time t2.We define the average angular velocity of the body in the time interval t from t1 to t2 to be

21t2t1t

In which t.

is the angular displacement that occurs during

(2).The (instantaneous) angular velocity , with which we shall be most concerned, is the limit of the average angular velocity as t

is made to approach zero.Thus

limdt0tdt

If we know

(t), we can find the angular velocity  by

3 differentiation.

(3).The unit of angular velocity is commonly the radian per second (rad/s) or the revolution per second (rev/s).

(4).The magnitude of an angular velocity is called the angular speed, which is also represented with . (5).We establish a direction for the vector of the angular velocity  by using rule,

a as right-hand shown in the figure.Curl your right hand about the rotating record, your fingers pointing in the direction of rotation.Your extended thumb will then point in the direction of the angular velocity vector.6.Angular acceleration

(1).If the angular velocity of a rotating body is not constant, then the body has an angular acceleration.Let the angular velocity at times

t2

2

and

1

be

and t1, respectively.The average angular acceleration of the rotating body in the interval from t1 to t2 is defined as

In which

21t2t1 t is the change in the angular velocity that occurs

4 during the time interval t.

(2).The (instantaneous) angular acceleration , with which we shall be most concerned, is the limit of this quantity as is made to approach zero.Thus

limdt0tdtt

above equations hold not only for the rotating rigid body as a whole but also for every particle of that body.

(3).The unit of angular acceleration is commonly the radian per second-squared (rad/s2) or the revolution per second-squared (rev/s2).

(4).The angular acceleration also is a vector.Its direction depends on the change of the angular velocity. 7.Rotation with constant angular acceleration:

dddt0tdt

d10td(0t)dt0tt2dt2Here we suppose that at time

t0, 00.We also can get a parallel set of equations to those for motion with a constant linear acceleration.8.Relating the linear and angular variables: They have relations as follow: Angular displacement: d Angular velocity:

dsdr

vr

5 Angular acceleration:

atr anv

6.2 Kinetic Energy of Rotation 1.To discu kinetic energy of a rigid body, we cannot use the familiar formula

Kmv2/2

directly because it applies only to particles.Instead, we shall treat the object as a collection of particles-all with different speeds.We can then add up the kinetic energies of these particles to find kinetic energy of the body as a whole.In this way we obtain, for the kinetic energy of a rotating body,

K111122m1v12m2v2m3v3mivi2 2222In which mi is the ma of the ith particle and

vi

is its speed.The sum is taken over all the particles in the body.2.The problem with above equation is that

vi

is not the same for all particles.We solve this problem by substituting for v in the equation with

r, so that we have

211Kmi(ri)2(miri2)22

In which  is the same for all particles.3.The quantity in parentheses on the right side of above equation tells us how the ma of the rotating body is distributed about its axis of rotation.

(1).We call that quantity the rotational inertia (or moment of

6 inertia) I of the body with respect to the axis of rotation.It’s a constant for a particular rigid body and for a particular rotation axis.We may now write

Imiri2

(2).The SI unit for I is the kilogram-square meter (kgm2).(3).The rotational inertia of a rotating body depends not only on its ma but also on how that ma is distributed with respect to the rotation axis.

4.We can rewrite the kinetic energy for the rotating object as

K1I22

Which gives the kinetic energy of a rigid body in pure rotation.It’s the angular equivalent of the formula

2KMvcm/2, which gives the kinetic energy of a rigid body in pure translation.

7 6.3 Calculating the Rotational Inertia 1.If a rigid body is made up of discrete particles, we can calculate its rotational inertia from

Imiri2.

2.If the body is continuous, we can replace the sum in the equation with an integral, and the definition of rotational inertia becomes

Ir2dm.In general, the rotational inertia of any rigid body with respect to a rotation axis depends on (1).The shape of the body, (2).The perpendicular distance from the axis to the body’s center of ma, and (3).The orientation of the body with respect to the axis.The table gives the rotational inertias of several common bodies, about various axes.Note how the distribution of ma relative to the rotational axis affects the value of the rotational inertia I.We would like to give the example of rotational inertia for

a thin circular plate

Irrddr2R0rdr320111dR42(R2)R2mR2

422a thin rod (1)I1r2drl2l213r3l2l21l11()32(l)l2ml2 321212(2)

13l03l1I2I1m()2ml2212I2r2drl1(l)l23

341ml2ml2ml2121238 3.The parallel-axis theorem: If you know the rotational inertia of a body about any axis that paes through its center of ma, you can find its rotational inertia about any other axis parallel to that axis with the parallel-axis theorem:

IIcmMh2

Here M is the ma of the body and h is the perpendicular distance between the two parallel axes.

4.Proof of the parallel-axis theorem: Let O be the center of ma of the arbitrarily shaped body shown in cro section in the figure.Place the origin of coordinates at O.Consider an axis

through

O perpendicular to the plane of the figure, and another axis of P parallel to the first axis, Let the coordinates of P be a and b.Let dm be a ma element with coordinates x and y.The rotational inertia of the body about the axis through P is then

Ir2dm[(xa)2(yb)2]dm

Which we can rearrange as

9 I(x2y2)dm2axdm2bydm(a2b2)dmIcm00MhIcmMh22 6.4 Newton’s Second Law for Rotation

1.Torque: The following figure shows a cro section of a body that is free to rotate about an axis paing through O and perpendicular to the cro section.A force F is applied at point P, whose position relative to O is defined by a position vector r.Vector F and r make an angle  with each other.(For simplicity, we consider only forces that have no component parallel to the rotation axis: thus, F is in the plane of the page).We define the torque  as a vector cro product of the position vector and the force

rF 

Discu the direction and the magnitude of the torque.2.Newton’s second law for rotation (1).The figure shows a simple case of rotation about a fixed axis.The rotating rigid body consists of a single particle of ma m fastened to the end

10 of a male rod of length r.A force F acts as shown, causing the particle to move in a circle about the axis.The particle has a tangential component of acceleration governed by Newton’s second law: acting on the particle is

Ftmatat

.The torque

.

rFFtrmatrm(r)r(mr2)The quantity in parentheses on the right side of above equation is the rotation inertia of the particle about the rotation axis.So the equation can be reduced to

I.

(2) For the situation in which more than one force is applied to the particle, we can extend the equation as I.Where  is the net torque (the sum of all external torques) acting on the particle.The above equation is the angular form of Newton’s second law.

(3) Although we derive the angular form of Newton’s second law for the special case of a single particle rotating about a fixed axis, it holds for any rigid body rotating about a fixed axis, because any such body can be analyzed as an aembly of single particles.

11 6.5 Work and Rotational Kinetic Energy 1.Work-kinetic energy theorem: Let’s again consider the situation of the figure, in which force F rotates a rigid body consisting of a single particle of ma m fastened to the end of a male rod.During the rotation, Force F does work on the body.Let us aume that the only energy of the body that changed by F is the kinetic energy.Then we can apply the work-kinetic energy theorem to get

KKfKiWK1212IfIiW22

Above equation is the angular equivalent of the work-kinetic energy theorem for translational motion.We derive it for a rigid body with one particle, but it holds for any rigid body rotated about a fixed axis.2.We next relate the work W done on the body in the figure to the torque  on the body due to force F.If the particle in Fig.11-17 were move a differential distance ds along its circular path, the body would rotate through differential angle with dsrdd, ..We would get

dWFdsFtdsFtrddThus the work done during a finite angular displacement from i to f is then

Wd.Above equation holds for

if12 any rigid body rotating about a fixed axis.3.We can find the power P for rotational motion

PdWd dtdt 13

推荐第5篇:双语教学

伊宁市“双语”教学工作起步较早,从1995年起,市第七中学每年招一个“双语”实验班,理科使用汉语言授课。小学利用早读课实行口语强化训练,开始积极探索“双语”教学工作。2004年,根据自治州党委、政府《关于进一步推进“双语”教学,提高少数民族教育质量的决定》精神,2005年,市委、政府出台了《伊宁市大力推进民汉合校和“双语”教学工作实施方案》,并组成专题调研组深入基层,广泛征求民意。2007年,出台了《关于进一步加强少数民族教育,大力推进“双语”教学工作规划》和《关于大力推行“双语”教学的实施意见》,从2007年9月起在全市推行了“3+3”“双语”教学模式,即:民语学前教育全部实行汉语教学、小学起始年级除音乐以外的其他课程全部实行汉语教学,从小学四年级起开设母语言课的“双语”教学模式。实践也充分的证明,“3+3”“双语”教学模式不仅符合本地教育教学工作的实际,同时也符合广大少数民族家长的愿望,与目前全疆运用的三种模式相比,该市推行的“3+3”“双语”教学模式是一种探索创新的教育教学模式,在促进“双语”教学发展方面起到了积极作用。通过两年多的实践,截止目前,伊宁市共建有民语中小学67所,少数民族在校学生28350人。各民语学校均设有“双语”班,共开设“双语”教学班472个,学生17157人,占全市少数民族学生人数的61%。(市区有145个班,6031名学生,占“双语”班学生数的35%;农村327个班,11126名学生,占“双语”班学生数的65%)。全市“双语”专任教师共720人(其中招聘592人,历年培训转型128人),占少数民族专任教师队伍总人数2948人的24%。城乡“双语”幼儿园教职工257人,其中公开招聘教师79人。两年多来,广大少数民族学生学习汉语的兴趣越来越高,广大少数民族家长渴望享受优质教育的愿望越来越强烈。通过调研发现:73%的家长关注“双语”教学改革;81%的家长配合学校的“双语”教学工作;77%的家长了解“3+3”“双语”教学模式;100%的教师拥护“双语”教学。在推进“双语”教学发展中,主要采取了以下措施:

一是加大财政投入力度,加强了“双语”幼儿园基础建设。2008年,伊宁市出台《伊宁市城乡“双语”幼儿园建设方案》。提出了2008年46个村及20个城乡结合部全部建成“双语”幼儿园,少数民族儿童入园率达到85%。2009年,35个城乡结合部全部建成“双语”幼儿园,少数民族儿童入园率达到了100%的建设目标。近三年,市委、市政府多方努力,通过干部捐款、财政补贴拨付等筹措资金近500万元,加强了城乡“双语 ”幼儿园基础建设,分别配备教材教辅、教学设备,落实了教师工资、贫困生补助等,促进了“双语 ”幼儿园的发展。

二是加强教师队伍建设,不断提高教育教学水平。从2005年起,由教育、人事、编委、纪检监察等部门联合成立伊宁市“双语”教师招聘工作领导小组,到2008 年共招聘8批“双语”教师592人。每年教育局统一对招聘教师综合考核,考核合格者继续聘用,不合格者予以解聘。2009年,把592名“双语”教师中具备条件和考核合格的356名纳入市财政编制。2009年,由州教育局在全州范围内招聘了“双语”教师245人,进一步加强了“双语”教学力量。

同时,加大了师资培训力度,通过脱产培训、集中培训、汉语学校代培、校本培训和自学等形式,在职民语教师中有128人转型为“双语”教师。现全市40岁以下在职民语教师有1374人,其中正在参加培训的262人。2009年3月,市政府出台了《伊宁市中小学“双语”及40岁以下少数民族教师培训方案》,计划在2015年前将1374名在职民语教师全部培训完毕。目前,全市8所汉语学校建立了“双语”教师培训基地,市财政每年投入16万元培训资金,加大对“双语”教师的培训力度,提高师资水平,促进少数民族地区“双语”教学的发展。

三是广泛开展教学交流,结对互学促进“双语”教学发展。组织开展了“双语”教师教材分析、教案编写,案例分析,集体备课、说课、上研讨课,加强交流,提高教学能力。每年还开展了“双语”教师课堂教学调讲赛、口语大赛、汇报演出等竞赛提高“双语”教师的综合能力。召开了五届“双语”教学现场观摩暨经验交流会,“双语”副校长座谈会,总结推广“双语”教学先进经验。

采取了“结对互学”模式,选派汉语学校骨干教师到民语学校任“双语”副校长,主抓“双语”教学和民语教师汉语强化培训;民语学校“双语”骨干教师到汉语学校任教研组长,加强教法交流和研究。“双语”副校长桥梁作用显著,民汉学校之间同上一堂课,换班上课,共同开展教研活动,一日体验等活动不仅加深民汉师生感情,还提高教育教学质量。全市48所民、汉学校教师结成89个“一帮一”对子,“532工程”人员帮带作用发挥明显。

四是内地初、高中班报名人数逐年攀升,促进“双语”教学持续健康发展。伊宁市内地初中班报名始于2004年,当年报名人数为1200余人。2009年为1555人。内高班报名始于2000年,当年报名人数为40余人。2009年为627人,报名人数逐年攀升。内初班、内高班家长、学生的宣传也激发广大少数民族学生学好汉语的兴趣,有利促进“双语”教学的持续发展。

推荐第6篇:《物理双语教学课件》Chapter 15 Electric Fields 电场

Chapter 15 Electric Fields

Suppose we fix a positively charged particle q1 in place and then put a second positively charged particle q2 near it.From Coulomb\'s law we know that q1 exerts a repulsive electrostatic force on q2.Then you may ask how q1 \"know\" of the presence of q2? That is, since the charges do not touch, how can q1 exert a force on q2? This question about action at a distance can be answered by saying that q1 set up an electric field in the space surrounding it.At any given point P in that space, the field has both magnitude and direction.Thus when we place q2 at P, q1 interacts with q2 through the electric field at P.The magnitude and direction of that electric field determine the magnitude and direction of the force acting on q2.Another action-at-a-distance problem arises if we move q1, say, toward q2.Coulomb’s law tells us that when q1 is closer to q2, the repulsive electrostatic force acting on q2 must be greater, and it is.Does the electric field at q2, and thus the force acting on q2, change immediately? The answer is no.Instead, the information about the move by q1 travels outward from q1 as electromagnetic wave at the

1 speed of light c.The change in the electric field at q2, and thus the change in the force acting on q2, occurs when the wave finally reach q2.

15.1 The Electric Field 1.The temperature at every point in a room has a definite value.We call the resulting distribution of temperature as temperature field.In much the same way, you can imagine a preure field in the atmosphere: it consists of the distribution of air preure values, one for each point in the atmosphere.Theses two examples are of scalar field, because temperature and air-preure are scalar quantities.2.The electric field is a vector field

(1) It consists of a distribution of vectors, one for each point in the region around a charged object.

(2) In principle, we can define the electric field at some point near the charged object by placing a positive charge q0, called a test charge, at the point.

(3) We then measure the electrostatic force test charge.The electric field object is defined as

FEq0E

F

that acts on the

at point P due to the charged

.

(4) We represent the electric field at point P with a vector

2 whose tail is at P, as shown in the figure. (5) The SI unit for the electric field is the newton per coulomb (N/C).

15.2 Electric Field Lines 1.Michael Fraday, who introduced the idea of electric fields in the 19th century, thought of the space around a charged body as filled with lines of force.Although we no longer attach much reality to these lines, now usually called electric field lines, they still provide a nice way to visualize patters in electric fields.2.The relation between the field lines and electric field vectors (1) At any point, the direction of a straight field line or the direction of the tangent to a curve field line gives the direction of E at that point.(2) The field lines are drawn so that the number of lines per unit area, measured in a plane that is perpendicular to the lines, is proportional to the magnitude of

E.This second relation means that where the field lines are close together, E is large; and where they are far apart, E is small.

3 3.Some Electric Field lines (1) The electric field lines of a sphere with uniform charge as shown in the right figure. (2) Right figure gives the electric field lines of an infinitely large, non-conducting sheet (or plane) with a uniform distribution of positive charge on one side. (3) The figure shows the field lines for two equal positive point charges.

(4) The figure shows the pattern for two charges that are equal in magnitude but opposite sign.

(5) From above figures, we can come to the conclusion: Electric field lines extend away from positive charge and toward negative charge.

4 15.3 The Electric Fields for some cases 1.The electric field due to a point charge q

(1) If we put a positive test charge q0 at any point a distance r from the point charge, the magnitude of the electrostatic force acting on q0, from Coulomb’s law, is magnitude of the electric field vector is direction of E

F1qq0240r.The .The

EF1qq040r2is the same as that of the force on the positive test charge: directly away from the point charge, as shown in right figure, if q is positive, and toward it if q is negative.

(2) We can find the net, or resultant, electric field due to more than one point charges with the aid of the principle of superposition.If we place a positive test charge q0 near n point charges q1, q2,…,qn, then the net force charges acting on the test charge is

F0

from the n point

F0F01F02F0n.So the net electric field at the position of the test charge is F0F01F02F0nEE1E2En.Here Ei q0q0q0q0is the electric field that would be set up by point charge i acting alone.

5 2.The electric field due to an electric dipole: Figure (a) shows two

charges

of magnitude q but of opposite sign, separated by a distance d.We call this configuration an electric dipole.Let us find the electric field due to the dipole at a point P, a distance z from the midpoint of the dipole and on its central axis, as shown in the figure.(1) The magnitude of the electric field is Eqd1p20z320z31, in which the product qd is the magnitude

p p of a vector quantity known as the electric dipole moment of the dipole.

3.The electric field due to a line of charge

(1) So far we have considered the electric field that is produced by one or, at most, a few point charges.We now consider charge distributions that consist of great many closed spaced point charges (perhaps billions) that are spread along a line, over a surface, or within a volume.Such distributions are said to be continuous rather than discrete.When we deal with continuous charge distributions, it is most convenient to

6 expre the charge on an object as a charge density rather than as a total charge.For a line of charge, for example, we would report the linear charge density (or charge per length) whose SI unit is the coulomb per meter. (2) The figure shows a thin ring of radius R with a uniform positive linear charge density , around its circumference.What is the electric field at point P, a distance z from the plane of the ring along its central axis? (3) We can get the magnitude of the electric field as Eqz40(z2R2)3/2.

4.The electric field due to a charged disk (1) The figure shows a circular plastic disk of radius R that has a positive surface charge uniform density  on its upper surface.What is the electric field at point P, a distance z from the disk along its central axis?

(2) Our plan is to divide the disk into concentric flat rings and then to calculate the electric field at point P by adding up the contributions of all rings.The magnitude of the electric field is Ez(1).2220zR

7 15.4 A point charge in an electric field 1.We now want to determine what happens to a charged particle that is in an electric field that produced by other stationary or slowly moving charges.This force is given by which q is the charge of the particle and

E

FqE, in

is the electric field that other charges have produced at the location of the particle.2.Measuring the elementary charge: Figure shows the Millikan

oil-drop apparatus for measuring the elementary charge e.3.Ink-jet printing: Figure shows the

eential features of an ink-jet printer.

15.5 A Dipole in an Electric Field 1.The figure shows why the molecule of water (H2O) is an electric dipole.If the water molecule is placed in an external electric field, it behaves as would be expected of the more

8 abstract electric dipole.2.The torque can be written as

pE.3.Potential energy of an electric dipole: The expreion for the potential energy of an electric dipole in an external electric field is simplest if we choose the potential energy to be zero when the angle  in the figure is 900.It can be written as

UpE.

Microwave cooking: the explanation it.

推荐第7篇:《物理双语教学课件》Chapter 23 Interference 干涉理论

Chapter 23 Interference

Sunlight, as the rainbow shows us, is a composite of all the colors of the visible spectrum.Soup bubbles and oil slicks can also show striking colors, produced not by refraction but by constructive and destructive interference of light.

23.1 Young’s Interference Experiment 1.In 1801 Thomas Young experimentally proved that light is a wave, contrary what most other scientists then thought.He did so by demonstrating that light undergoes interference. 2.Figure gives the basic arrangement of Young’s double-slit interference experiment.

On

the viewing screen C, Points of interference maxima form visible bright rows-called bright bands, bright fringes, or maxima.Dark regions-called dark bands, dark fringes, or minima-result from fully destructive interference and are visible between adjacent pairs of bright fringes.The pattern of bright and dark fringes on the screen is called an interference pattern.Figure is a photograph of the interference pattern.3.To find

what

exactly determines the locations of the fringes in Young’s double-slit interference experiment, let us see the

figure.

The

L

r2path-length-difference between rays be written as

r1 and can Ldsin, where d is the separation of the two slits.(1) For a bright fringe, number of wavelengths.It is dark fringe, It is L

L

must be zero or an integer

dsinmm0,1,2,.(2) For a

must be an odd multiple of half a wavelength.

2m1,2,.(3) Using above two equations, dsin(2m1)we can find the angle  to any fringe and thus locate that fringe; further, we can use the values of m to label the fringes.4.We now wish to derive an expreion for the intensity I of the fringes as a function of .(1) Let us aume that the electric field components of the light waves arriving at point P in the figure from the two slits are not in phase and vary with time as

E1E0sint and

E2E0sin(t2dsin) respectively.(2) So we have where 2dsin.(3) Thus

11EE1E22E0cos()sin(kx),

22the intensity is I(2E0cos1)2

214I0cos2.2

5.Combining more than two waves:

23.2 Interference from Thin Films 1.The colors we see when sunlight illuminates a soap bubble or an oil slick are caused by the interference of light waves reflected from the front and back surfaces of a thin transparent film.The thickne of the soap or oil film is typically the order of magnitude of the wavelength of the light involved.2.Figure shows a thin transparent film of uniform thickne L and index of refraction n2, illuminated by bright light of wavelength  from a distant point source.For now, we aume that air lies on both sides of the film and thus that

n1n3

in figure.For simplicity, we also aume that the light rays are almost perpendicular to the film.3.Reflection phase shifts: Refraction at an interface never causes a phase change.But reflection can, depending on the indices of refraction on two sides of the interface.When an incident wave travels in the medium of leer index of refraction (with greater speed), the wave that is reflected at the interface undergoes a phase shift of  rad, or half a wavelength.4.The optic path-length difference in the case of thin film is 2nL2.

2nL2mm1,2,.5.For a bright film, we have 6.For a dark film, we have

2nL2(2m1)2m0,1,2,.23.3 Michelson’s Interferometer 1.An interferometer is a device that can be used to measure lengths or changes in length with great accuracy by means of interference fringes.2.Figure shows

Michelson’s interferometer.

推荐第8篇:教学课件

第一章 水工艺设备常用材料(四学时)(第五周周

二、周四) 1.教学目的及基本要求: 1)了解金属材料的分类

2)掌握材料的基本性能及使用条件 3)熟悉耐蚀金属材料及性能 2.教学内容及学时分配:

1)金属材料的分类、基本性能,耐蚀金属材料及性能(1学时)

2)无机非金属材料分类及基本性能,耐蚀无机非金属材料及其性能(1学时) 3)高分子材料的性能,常用塑料和橡胶介绍(1学时) 4)复合材料的性能特点(1学时) 3.教学内容的重点和难点:

1)重点:掌握水工艺设备常用材料的基本性能与特点

2)难点:如何根据材料的性能、特点和水工艺设备要求,确定不同材料的适用条件和范围。

4.教学内容的深化和拓宽: 课后思考:

1)金属材料的基本性能包括哪几个方面的内容?你认为水工艺设备对金属材料的哪些性能要求更高?怎样才能满足这些要求? 2)影响钢材性能的因素主要有哪些?

3)合金钢有哪些类型?何谓耐蚀低合金钢?耐大气腐蚀、海水腐蚀的低合金钢中各含哪些主要合金元素?

4)不锈钢有哪些类型?在酸性介质、碱性介质及中性水溶液中是否可以选用同一种不锈钢?简述理由。

5)铝、铜及其合金的主要性能特点是什么?主要用于什么场合? 6)钛及钛合金最突出的性能特点是什么?

7)简要说明无机非金属材料的性能特点,以及主要用于哪些场合。

8)高分子材料主要有哪些类型?常用于水工程及水工艺设备中的高分子材料有哪些?耐蚀有机高分子有哪些类型?各有什么特点?

9)复合材料主要有哪些性能特点?你认为在水工艺设备中复合材料最突出的性能特点是什么?请列举在水工业领域应用复合材料的几个事例。 5.教学方式(手段)及教学过程中应注意的问题: 1)方式(手段):多媒体教学; 2)注意:

第二章 材料设备的腐蚀、防护及保温(三学时)(第五周周

五、第六周周二) 1.教学目的及基本要求:

1)了解材料设备的腐蚀的危害以及腐蚀与防护科学的发展状况 2)掌握腐蚀与防护基本原理 3)熟悉各种设备腐蚀防护技术

4)能运用腐蚀与防护原理进行材料的选用 5)了解设备保温的目的

6)熟悉常用保温材料,保温结构与施工 2.教学内容及学时分配:

1) 材料设备的腐蚀与防护概述,腐蚀与防护基本原理,设备腐蚀防护技术,材料的选用(2学时)

2) 设备保温的目的,保温材料,保温结构与施工。(1学时) 3.教学内容的重点和难点:

1)重点:掌握水工艺设备及常用材料的腐蚀与防护的基本原理与方法 2)难点:设备、材料的腐蚀原理与方法 4.教学内容的深化和拓宽: 课后思考:

1) 什么叫氢蚀?它对钢的性能有什么影响? 2) 什么叫极化?极化对金属腐蚀有什么影响?

3) 什么叫阴极去极化?阴极去极化可以通过哪些途径来实现?其中最常见、最重要的阴极去极化反应是什么?

4) 什么是金属的全面腐蚀、局部腐蚀?局部腐蚀包括哪些类型?

5) 试从腐蚀发生的条件、机理、影响的因素和控制的途径等方面比较小孔腐蚀和缝隙腐蚀的异同。

6) 什么叫应力腐蚀?它具有什么特点?是不是介质的腐蚀性越强,材料的应力腐蚀敏感性就越高?为什么?

7) 微生物为什么会影响金属的腐蚀?试例举最常遇到的微生物腐蚀。 8) 高分子材料物理腐蚀过程是怎样进行的?高分子材料耐溶剂性能的优劣可由哪些原则进行判断?

9) 什么叫高分子材料的应力腐蚀?它可以分为哪些类型? 10) 在设计金属设备结构时应注意什么才能避免或减少损失?

11) 有哪几种阴极保护形式?各有什么特点?阴极保护时,被保护设备处于什么状态,为什么?

12) 阳极保护适用于什么样的金属-介质体系?

13) 若一体系在阳极极化过程中,极化电流很低并几乎维持不变,对该体系可否用阳极保护法进行保护?为么?

14) 玻璃钢衬里层的结构及作用是什么? 15) 缓蚀剂的类型有哪些?

16) 选材的原则是什么,应考虑的因素有哪些?

17) 设备保温的目的是什么?在哪些情况下需要保温? 5.教学方式(手段)及教学过程中应注意的问题: 1)方式(手段):多媒体教学 2)注意:

第三章 水工艺设备理论基础(十学时)(第六周周二至第七周周五) 1.教学目的及基本要求:

1)了解容器的结构与分类以及容器设计的基本要求

2)掌握回转薄壳的薄膜应力的计算、内压薄壁容器的应力计算

3)熟悉压力容器的强度计算,平板的变曲应力,压力容器的二次应力,内压封头设计

4)掌握机械传动的主要方式

5)掌握铸造、压力加工、焊接、金属切削加工等机械制造工艺

6)掌握热量传递与交换理论,包括热传导、对流换热、凝结换热、辐射换热 2.教学内容及学时分配:

1) 容器应力理论,包括容器概述,回转曲面与回转薄壳,回转薄壳的薄膜应力,环向薄膜应力,内压薄壁容器的应力,压力容器的强度计算,平板的变曲应力,压力容器的二次应力,内压封头设计等;(3学时) 2) 机械传动理论,包括机械传动概述,机械传动的主要方式;(2学时) 3) 机械制造工艺,包括铸造、压力加工、焊接、金属切削加工等;(2学时) 4) 热量传递与交换理论,包括热传导、对流换热、凝结换热、辐射换热,传热过程,传热过程的增强与削弱。(3学时) 3.教学内容的重点和难点:

1)重点:掌握与水工艺设备设计、制造有关的容器应力理论、机械传动方式与特点以及设备制造工艺方法与适用条件 2)难点:容器应力理论与热量交换理论 4.教学内容的深化和拓宽: 课后思考:

1.何谓回转薄壳的薄膜应力?简述壳体平衡方程和微体平衡方程的推导过程。2.圆柱壳、球壳、椭球壳和锥形壳的薄膜应力各有哪些特点?如何计算它们的薄膜应力σω和环向应力σθ?

3.如何确定圆筒壁的计算厚度δ、设计厚度δd、名义厚度δn、有效厚度δe和最小厚度δmin?

4.平板的弯曲应力是如何产生的?为什么应当尽量避免使用平板封头和矩形压力容器?

5.什么叫压力容器的二次应力?它对封头和筒体的设计有哪些影响? 6.容器的封头分为哪几类?如何进行各类封头的强度计算?

7.机械传动的方式主要有哪几种?在水工艺设备中最常用的有哪几种?

8.渐开线标准齿轮有几部分组成?基本参数是什么?齿轮传动的主要失效形式有哪几种?

9.带传动和链传动各有哪些特点?带的截面形式对带的传动效率有什么影响?根据结构的不同,传动链主要有哪些形式?各自适用于什么条件?链传动的失效形式有哪些? 10.机械制造中的基本工艺方法有哪些?

11.金属的压力加工主要包括哪些方式?简要说明各种加工方式的加工过程。12.简要说明各种焊接方法的特点和适用条件。

13.金属切削加工主要有哪些方式?简述不同切削方式的作用特点和适用条件。14.试从微观角度阐述导热机理。

15.什么是导热系数?它受哪些因素的影响? 16.试述导热过程单值性条件的定义和内容。 17.影响对流换热的因素有哪些?在水工艺设备中如何体现? 18.什么是受迫紊流换热?试述受迫紊流换热的两种类型。

19.什么是凝结换热?影响膜状凝结换热的因素有哪些?如何增强凝结换热? 20.什么是辐射换热?热辐射的本质和特点是什么?增强吸收太阳能的措施有哪些? 21.什么是传热过程?常见的传热过程有哪些?如何增强或削弱传热过程? 22.用实例说明导热、对流换热和辐射换热现象。 5.教学方式(手段)及教学过程中应注意的问题: 1)方式(手段):多媒体教学 2)注意:

第四章 水工艺设备的分类(一学时)(第七周五讲) 1.教学目的及基本要求:

1)全面了解水工艺设备的分类及基本特点; 2)本章为了解内容 2.教学内容及学时分配:

1) 设备分类:通用机械设备与专用设备

2) 容器设备:压力容器法兰、管法兰、支座、安全泄放装置、填料及其支承装置、布气(汽)装置

3) 搅拌设备:搅拌设备的用途及分类、机械搅拌设备结构及其工作原理以及水处理工艺中常用的机械搅拌设备

4) 换热设备:换热设备的功能和分类、常用换热器的构造和特点、换热器的适用条件和选型以及换热器计算。 3.教学内容的重点和难点:

1)重点:介绍水工艺与工程中常用的结构较简单的容器、搅拌及换热设备 2)难点:无

4.教学内容的深化和拓宽: 无

5.教学方式(手段)及教学过程中应注意的问题: 1)方式(手段):多媒体教学 2)注意:

第五章 容器(塔)设备(二学时)(第八周周二) 1.教学目的及基本要求: 1) 了解压力容器法兰的类型

2) 掌握容器法兰密封面的型式、密封垫片

3) 了解管法兰的类型及密封垫片

4) 了解容器支座的型式

5) 掌握安全泄放装置的原理与适用场所

6) 自学填料及其支承装置,布(气、汽)装置 2.教学内容及学时分配:

1)压力容器法兰密封面的型式、容器法兰的类型、法兰的密封垫片,管法兰的类型及密封垫片,卧式容器的支座、立式容器的支座,(1学时) 2)安全阀、爆破片的工作原理,填料及其支承装置,布(气、汽)装置。(1学时) 3.教学内容的重点和难点:

1)重点:水工艺与工程中常用的结构较简单的容器、搅拌及换热设备,学生应结合这些设备的工艺特点(专业课中内容),着重熟悉和掌握设备结构、组成、工作原理以及适用条件等

2)难点:如何对上述设备的选型、设计等提出选择材料、结构、传动与加工方式、腐蚀防护等方面的要求 4.教学内容的深化和拓宽: 课后思考:

1.压力容器法兰及其密封面和密封垫片分别有哪些形式?如何正确选用压力容器法兰及其密封面和密封垫片?

2.管法兰及其密封面和密封垫片各有哪些形式?如何选用管法兰及其密封面和密封垫片?

3.卧式容器和立式容器的制作分别有哪些形式?卧式容器为什么一般采用双支座? 4.安全阀的作用是什么?各类安全阀分别有哪些特点?怎样选用安全阀? 5.爆破片分为哪几类?常用的爆破片有哪些?

6.水工艺填料设备对填料有哪些要求?常用的填料有哪几类?

7.对布(气、汽)装置的基本要求有哪些?水工艺设备中常用的布水(气、汽)装置有哪些形式? 5.教学方式(手段)及教学过程中应注意的问题: 1)方式(手段):多媒体教学 2)注意:

第六章 搅拌设备 (二学时)(第八周周四) 1.教学目的及基本要求:

1) 了解搅拌设备的用途及分类

2) 掌握机械搅拌设备组成及其工作原理

3) 掌握机械搅拌器的型式与结构

4) 熟悉传动装置、搅拌轴、联轴器及轴承作用及结构特点

5) 自学常用搅拌设备简介 2.教学内容及学时分配:

1)搅拌设备的用途及分类,机械搅拌设备组成及其工作原理(1学时)

2)机械搅拌器的型式与结构,传动装置、搅拌轴、联轴器及轴承,常用搅拌设备简介(1学时)

3.教学内容的重点和难点:

1)重点:机械搅拌设备组成及其工作原理,机械搅拌器的型式与结构 2)难点:搅拌设备选型及工艺参数确定 4.教学内容的深化和拓宽: 课后思考:

1.拌设备的功能是什么?在水处理工艺中,搅拌器主要作用是什么?简述其工作原理。

2.常用机械搅拌器有哪几种形式?它们之间的区别是什么?

3.搅拌轴工作时受力状况如何?设计计算时需考虑哪些因素? 5.教学方式(手段)及教学过程中应注意的问题: 1)方式(手段):多媒体教学 2)注意:

第七章 换热设备 (二学时)(第八周周五) 1.教学目的及基本要求: 1)了解换热设备的功能和分类 2)掌握常用换热器的构造和特点

3)掌握换热器性能评价方法

4)自学换热器的适用条件,换热器的选型,换热器计算。 2.教学内容及学时分配:

1)换热设备的功能和分类,常用换热器的构造和特点,包括容积式换热器、半容积式换热器、快速式换热器、半即热式换热器、混合式换热器等;(1学时)

2)换热器性能评价,换热器的适用条件,换热器的选型,换热器计算。(1学时) 3.教学内容的重点和难点:

1)重点:常用换热器的构造和特点,换热器性能评价方法 2)难点:换热器选型及工艺参数计算 4.教学内容的深化和拓宽: 课后思考:

1.换热设备的分类方法有哪些?每种方法又将换热设备分为哪些常用类型? 2.试述容积式换热设备的类型和特点。 3.试述半容积式换热设备的构造和特点。

4.常用的快速式换热设备有哪些?各自的特点是什么? 5.如何选用换热设备?

5.教学方式(手段)及教学过程中应注意的问题: 1)方式(手段):多媒体教学; 2)注意:

第八章 分离设备(二学时)(第九周周二) 1.教学目的及基本要求: 1)了解分离设备的用途及分类。

2)熟悉气浮分离设备的功能与种类

3)掌握几种常用气浮设备的工作原理

4)了解筛滤设备,砂滤设备

5)掌握膜分离设备的分离原理

6)掌握几种膜分离装置的结构 2.教学内容及学时分配:

1)分离设备的用途及分类,气浮分离设备的功能与种类,微孔布气气浮设备,加压溶气气浮设备,溶气真空气浮设备,电解气浮设备;(1学时)

2)筛滤设备,砂滤设备,膜分离设备,膜分离设备分类及分离原理,膜分离装置。(1学时)

3.教学内容的重点和难点:

1)重点:常用气浮设备的工作原理,膜分离设备的分离原理,膜分离装置的结构。 2)难点:膜分离设备的分离原理,膜分离装置的结构 4.教学内容的深化和拓宽: 课后思考:

1.分离设备的类型主要有哪些?各有什么功能? 2.气浮分离设备有哪几种?它们的共同点是什么? 3.格栅与滤网的作用是什么?谈谈它们之间有何区别? 4.简述真空过滤机的组成与工作原理。

5.离子交换膜与反渗透膜的区别是什么?它们各自的渗透机理是什么? 6.常用的膜分离设备有哪些?它们是如何工作的? 5.教学方式(手段)及教学过程中应注意的问题: 1)方式(手段):多媒体教学 2)注意:

第九章 污泥处置设备(二学时)(第九周周四) 1.教学目的及基本要求: 1)了解排泥设备的分类

2)掌握常用排泥设备的特点与适用范围

3)了解污泥浓缩与脱水设备的用途与类型

4)掌握常用污泥浓缩与脱水设备结构及工作原理 2.教学内容及学时分配:

1)排泥设备的分类,常用排泥设备的特点与适用范围;(1学时)

2)污泥浓缩与脱水设备的用途与类型,几种常用污泥浓缩与脱水设备结构及工作原理。(1学时)

3.教学内容的重点和难点:

1)重点:常用排泥设备的特点与适用范围,常用污泥浓缩与脱水设备结构及工作原理 2)难点:设备选型及参数设置 4.教学内容的深化和拓宽: 课后思考:

1. 行车式吸泥机是由哪几部分组成的?各组成部分的作用是什么?吸泥方式有哪几种?它们之间有何差别?

2. 污泥在脱水之前为什么还需要进行浓缩?

3. 带式压滤机是如何工作的?有何特点?影响带式压滤机脱水效果的因素是什么?

4. 真空过滤机是如何工作的?有何特点? 5.教学方式(手段)及教学过程中应注意的问题: 1)方式(手段):多媒体教学 2)注意:

第十章 投药设备(二学时)(第九周周五) 1.教学目的及基本要求: 1)认识各种常用计量和投加设备

2)掌握几种计量和投加设备的工作原理

3)课外查阅相关设备资料 2.教学内容及学时分配:

1)常用计量设备结构及工作原理;(1学时) 2)常用投加设备结构及工作原理;(1学时) 3.教学内容的重点和难点:

1)重点:计量和投加设备的工作原理 2)难点:计量和投加设备的工作原理 4.教学内容的深化和拓宽: 课后思考:

1.试述常用计量设备的类型、原理、特点和适用范围。2.目前水工艺工程中最常用的投药计量设备有哪几种?

3.简要说明电磁流量计、超声流量计、涡街流量计、质量流量计、涡轮流量计的工作原理,以及它们在水工艺与水工程中主要适用于哪些流体的计量,适用条件有何差别。4.药剂投加主要有哪几种形式?它们各自的适用条件是什么? 5.教学方式(手段)及教学过程中应注意的问题: 1)方式(手段):多媒体教学 2)注意:

推荐第9篇:教学课件

2008-04-14 08:42:03 董晓慧

英语课堂教学反思

教师要能够进行教学反思,即要借助行动研究,不断探讨与解决教学目的、教学工具和自身方面的问题,不断提升教学实践的合理性。要对教育的理论和实践持有一种“健康”的怀疑态度,并及时地把思想变为行动。像教学活动要求学生“学会学习”一样,教师也要能够在反思中“学会教学”。 其中,自觉性的反思行为是教师应该具备和坚持的。教师越能反思,在某种意义上说越是好老师。通过反思可以及时发现新问题,进一步激发教师的责任心,把教学实践提升到新的高度。教学反思的方法和过程其实也很简单:教师在每日教学结束后,进行简单的反思日记记载;教师之间相互听课观摩,并描述教学情境、交换意见;最重要的也是最能提高教师职业素养的一步是,教师要对他们在课堂中遇到的问题进行调查研究,反过来再改善教师的教学实践,并形成一种有意识地进行调查研究的良好习惯。我们要促进每个学生身心健康的发展,培养学生良好的品质的终身学习的能力,进行建设性学习,注重科学探究的学习,关注体验性学习,提倡交流与合作、自主创新学习。 “学生是学习的主体”,这是教师普遍了解的一个教学原则,教师的责任不在于教,而在教学生学。应该改变以往那种让学生限在自己后面亦步亦趋的习惯,引导学生自主学习,学生学习的主战场在课堂,课堂教学是一个双边活动的过程,只有营造浓厚的自主学习氛围,唤起学生的主体意识,激起学习需要,学生才能真正去调动自身的学习潜能,进行自主学习,真正成为课堂学习的主人。学生学英语本来就是一种快乐的事,因为他们都对外国语很好奇,很感兴趣,可是要让他们持久保持这种兴趣需要花很大的精力。所以我就谈谈如何在课堂上调动学生的学习积极性、主动性和创造性,让学生参与到知识形成的过程中,并从中感受到“参与之乐,思维之趣,成功之悦”。下面简单地回顾一下开学以来所做的一些英语教学工作。

一、面向全体学生,为学生全面发展和终身发展奠定基础。创设各种情景,鼓励学生大胆地使用英语,对他们在学习过程中的失误和错误采取宽容的态度。为学生提供自主学习和直接交流的机会,以及充分表现和自我发展的一个空间。鼓励学生通过体验、实践、合作、探索等方式,发展听、说、读、写的综合能力。创造条件让学生能够探究他们自己的一些问题,并自主解决问题。

二、关注学生情感,创造民主、和谐的教学气氛。新型的师生关系是平等、友好、民主的,宽松和谐的学习环境对于学生的学习和发展至关重要,作为老师应努力使自己全身心融入于教材、融于课堂、融于良好师生关系的和谐气氛之中,以真情教书、以真情待生、以真情赢得学生的信赖。教师应该努力以自己对学生的良好情感去引发学生积极的情感反应,创设师生情感交融的氛围,使学生在轻松和偕的学习氛围中产生探究知识和技能的兴趣。而教学中巧妙的构思,精心的设问是激活学生思维,培养学生创新精神的有效途径。 学生只有对自己、对英语及其文化有积极的情态,才能保持英语学习的动力并取得成绩,刻板的情态,不仅会影响英语学习的效果,还会影响其它发展,情态是学好英语的重要因素,因此我努力创造宽松民主、和谐的教学空间。尊重每个学生 ,把英语教学与情态有机地结合起来,创造各种合作学习的活动,促进学生互相学习,互相帮助,体验成就感,发展合作精神。关注学习有困难的或性格内向的学习,尽可能地为他们创造语言的机会。建立融洽、民主的师生交流渠道,经常和学生一起反思学习过程和学习效果,互相鼓励和帮助,做到教学相关。

三、加强对学生学习策略的指导,让他们在学习和适用的过程中逐步学会如何学习。问题情境具有强烈的吸引力,能激发学生对学习的需要,引发学生的创造性思维。“学源于思,思源于疑”,学生探索知识的思维过程总是从问问题开始,又在解决问题中得到发展。教学过程中学生在教师创设的情境下,自己动脑思考,动口表达,在解决问题的过程中,如果学生的情感、动机能够得到充分调动,他们的聪明才智就能充分发挥。只有让学生亲自参与了提出问题和解决问题的过程,他们才能真正成为学习的主人。积极创造条件,让学生参与到阶段性学习。引导学生结合语境,采用推测、查阅和协调的方法进行学习。在学习过程中,进行自我评价,并根据需要调整自己的学习目标和学习策略。

四、对学生进行有效的评价。评价可以使学生认识自我,树立自信,有助于反思及调整自己的学习过程,评价或采用测验及非测验形式,平时重视形成性评价,对学生回答学习过程中的表现所改进的诚绩,及反映的情感、态度、策略某方面进行及时的评价,如有口头评价、等级评价、学生之间互相评价等方法,充分发觉学生的进步,鼓励学生自我反思,自我提高,测验以学生综合运用能力为目标,侧重于学生理解和获取信息,能力减少客观题,增加主观题,通过评价学生学会分析自己的成绩和不足,明确努力方向。 英语教学反思实验中学 王姣枝教师要充当教育他人的角色,接受他人教育则有一定难度。为此,我们在教师思想工作中尝试“自我反思策略”,通过反思自我达

一、强化课堂教学交际化运用

⑴几分钟会话。每堂安排几分钟左右时间进行会话:有值日生汇报、自我介绍、家庭情况、谈论天气以及熟悉的歌星、影星和运动员等。让学生自由用英语交谈,允许学生模仿课文内容适当增减,自由发挥。也可以根据课文内容,通过问答形式作简要的复述。由单一的讨论内容过渡到综合内容,把几个不同内容的话题串联起来,既复习旧知识,又开发了学生的求知欲。还特别注意,轮到中差生会话时,鼓励他们大胆实践,有点滴进步就给予表扬肯定,以增强他们的自信心。

⑵注重语感教学。加强听说训练,努力做到视、听、说同步,培养语学习兴趣。每篇课文的生词、句型和文章都是朗读的好材料。要注意创造情景,让学生懂得不同句子的重音有不同的语感,显示不同的语言心理。同样,语调的不同,重音的移动,也体现了说话者不同的心理状态。经过训练,学生在以后朗读中也就注意了正确使用语音、语调和重读、弱读及升调,朗读也会绘声绘色,津津有味了,课堂上学生们兴趣盎然,学习积极性也大大提高了。

⑶对话使用,角色表演。结合课文内容,每教一个情景句型,让学生用当天所学的,到讲台前来表演。如学到 Family Tree这课,我告诉学生都带一张\"全家福\"照片,根据自己的全家福来用英语介绍。有能力的学生在根据实际情况在黑板上画出图表。整个课堂就是欢乐的海洋,在热烈的气氛中学生们学会并运用所学单词和句型,提高了运用语言交际的能力。

⑷运用直观教具为了进一步激发学生学习兴趣。我充分利用多媒体,图片、图表及实物、录音机等现代化教学手段及教具,生动形象地开展教学和交际活动。利用实物和图片教单词,学生能更好地记住词义,并能反复利用它们复习,其趣味性、直观性较强。例如, 在Unit 3学习颜色一单元,我利用多媒体将多彩的鲜花和颜色相结合,一朵朵漂亮的鲜花怒放,多彩的颜色随着一朵朵鲜花开放在学生的眼前,学生们惊奇得连声欢呼着,雀跃着的同时自己就记住了不同的颜色的单词。同时将颜色和现实生活中的广泛使用的实际例子相结合,例如,说出学生们喜欢的颜色,朋友和父母喜欢的颜色等等。What colour do you like? What colour dose your father /mother /friend ? I like ….the best.He likes …the best.同时让学生明白颜色构成了五彩缤纷的世界。学习英语的趣味和身边的点点滴滴和英语的紧密相关,让学生们有了学习英语的热情。激发学生珍惜现在的大好时光,要为祖国和自己将来得到更好的发展而勤奋学习。又如教Unit 7.The weather Forecast 时,我准备了中央电视台7:30新闻后的天气预报实况展示给同学们。优美的音乐,宋英杰那独有的中音,娓娓道来的天气预报的全文,变化的屏幕。学生们兴奋极了。七嘴八牙的纷纷参与,抢着举手说出自己知道的天气预报知识。然后,我又在屏幕上打出一张表格,根据课文将各种不同的人物需要知道天气预报的理由让生们一一列举出来,有能力的同学可以填到表格内,让学生感受到我们今天高科技的发展令人耳目一新。同时对于天气预报的兴趣油然而生。快乐的学习又使我的教学达到了教会知识的目的。一堂课学生们在快乐中学习,又在快乐中结束了。学生们经常会说,怎么时间这么快呀。

二、狠抓基础,注意容量

一方面突出知识重点,狠抓基础,一方面面向全体学生,注意容量,把握节奏,备课先备人,平时注意了解和分析每个学生的具体实际情况,因材施教,有的防矢,合理安排好40分钟教学内容和进程,课堂上,让每个学生都参与学习活动,学生实践面较广并在同一水平基础上对内容从多视角理解,多角度开展操练运用,即在互相理解的基础上从听、说、读、写不同角度展开,在教学\"时态\"这个既是重点也是难点时,自始至终利用多媒体的引导,设置不同的情景,在情景中进行教学,学生们不知不觉地学习了知识,突出了时间状态和不同的谓语动词,让学生练习理解运用,并设疑释疑、解惑,让学生积极思考,改变过去以教师为中心,满堂灌的状态,利用现代化教学手段,走出一支粉笔盒满黑板的例句的教学模式。形象的教学手段和彩色的多媒体教学手段使教学走向希望。

三、温故知新,克服遗忘

注意在课堂上经常复现旧知识,让学生反复操练,由易而顺利地完成一个个学习目标。具体方法是:学习—复习—再复习。复习时做到系统性、针对性、综合性。用以前学过的词语操练新句型或已学过的句式学习新单词。国际音标是初中学生教学的基础知识,学生感到拼读困难,针对这一个问题,我将英语的音标知识动画片每一堂课前都放上几分钟,既有趣又反复的复习了音标,效果很好。

四、当堂巩固,注重反馈

教学时要处处考虑如何发挥学生的主体作用,要以学生的参与程度和教学评价的得失作为课堂教学成功与否的尺度,所以,在学生经过一段学习活动后,让学生自己进行归纳分析,然后教师以鼓励表扬为主,满腔热情帮助学生,及时处理反馈信息,当堂巩固,如果时间许可的话,还可引导学生对一些易出错的地方,如人称变化,谓语动词的形式变化、某些习惯表达的异同进行归纳分析,让学生学有所得。

五、注意培养自学能力

\"授人以鱼,不如授人以渔\"教是为了学生的\"学\",是要让学生\"会学\"。因此,我重视对学生的课外学习的指导,帮助他们养成良好学习习惯和自学能力。

⑴早读课,每天两名学生领着同学们坚持听课文录音,加强听力训练,让学生模仿地地道的英美人语音、语调。

⑵指导学生订出学习英语长期计划和短期安排,每天坚持搞好课前预习,我给每一位学生家长一封信,讲明我的想法和做法,发动家长帮助督促实施。

⑶搞好课外阅读,对一些有自学能力的学生,给一些课外读物来扩展他们的指示视野。 每周两遍日记,给他们面批一次,持之以恒。

⑷强调作业的独立完成,培养学生克服困难的意志。帮助学生认识到,做作业实际上是新旧知识的运用过程,一定要养成自觉独立完成作业的习惯。

⑸培养学生认真听课,初步运用英语思维和理解。

⑹从音、形、意几方面培养观察力和记忆力,打好语音基础。

⑺用联想对比,归纳演绎等记单词和语法知识

教学反思是指教师在课堂教学实践中,批判地考察自我的主体行为表现及其行为依据,通过观察、回顾、诊断、自我监控等方式,或给予肯定、支持与强化,或给予否定、思索与修正,将“学会教学”与“学会学习”结合起来,从而努力提升教学实践的合理性,提高教学效能。 课堂教学反思,就是教师以自己的教学活动过程为思考对象,对自己教学过程的行为、措施、方式、方法、决策以及结果进行全面审视和分析,检讨得失、权衡利弊、系统总结,以期新一轮教学取得更大进步。

一、教学反思在教学中的意义 教学反思的意义在于科学的“扬弃”。教学反思的过程实际上是教师把自身作为研究的对象,研究自己的教学观念和实践,反思自己的教学行为、教学观念以及教学效果。通过反思,教师不断更新教学观念、改善教学行为、提升教学质量。教学与反思相结合、教学与研究相结合,不仅可以使自己真正在教学实践和教学研究中始终处于主导地位,提高教学工作的自觉性、目的性和创造性,而且还可以帮助教师在劳动中获得理性的升华和情感上的欢悦,提升自己的思想境界和思维品质,从而使教师体会到自己工作的价值和意义。 美国学者波斯纳认为:“没有内反思的经验是狭隘的经验,至多只能成为肤浅的知识。如果教师仅满足于获得的经验而不对经验进行深入的思考,那么他的教学水平的发展将大受限制,甚罕有所滑坡。”为此,波斯纳提出了一个教师成长的公式:教师成长=经验十反思。该公式体现了教师成长过程应该是一个总结经验、捕捉问题、反思研讨、把感性认识上升为理性思维的过程。

二、教学反思的途径 1.对教学目标的反思 教学目标是影响课堂教学成败的重要因素。反思教学目标是否全面,教师应多思考“我为什么做我所做的”。教师要根据整节课的教学实践及学生掌握知识的情况,反思自己所定的教学目标是否符合新教材的特点,是否符合学生的实际情况。学生通过该节课的学习,是否达到教学目标的要求。反思教学目标是否可行,要做到: (1)反思是否以总体课程目标为指导,以适应社会进步和学生发展的需要为目标,全面综合设计教学目标。如:教师制定的情感目标是培养学生热爱班集体、热爱学校的思想品德。学生学习完学校专用室的名称后,学会爱护学校现有的教学设施和学校的一草一木,这就是爱集体、爱学校的充分表现。 (2)反思是否将教学任务转化为学生的学习需要,让学生主动参与,发挥其主观能动性。教学目标是根据教学需要,从学生实际出发,从学生的角度阐述要求。学生主动参与课堂学习,基本上达到了教学的要求,学会了用英语介绍自己的学校。 (3)反思是否在学生原有的知识经验基础上,以学生为本,因人施教,适时调整教学目标。任教的班级不同,学生的学习特点与能力存在差异。比如,一个学生比较遵守纪律,学习方法比较灵活的班级,教师按教学目标上课,学生学习起来会较顺利。可是一日换上一个学生特别活跃,反应很快,但纪律难于控制的班级,教师就要以纪律竞赛的形式先调控好学生的情绪。若学生脑瓜特别灵,接受能力特别强,可在课本知识基础上学习一些相关的课外知识,尽量满足学生强烈的求知欲。 2.对教学内容的反思 (1)反思教学内容是否根据教学目标开发、利用学习资源,使之符合学生的经验、情趣和认知规律等。以教学《Our school》为例,教师可以立足新教材,选择贴近学生生活的题材。学生从最熟悉的自己的学校着手,很自然地过渡到专用室clinic、library、canteen等的名称及其方位的学习。语言教学内容的安排应当由近及远,由大到小,由简到繁。学生学习由浅入深,循序渐进。 (2)反思教学内容的科学性、思想性和趣味性是否符合学生年龄特点。例如:在教学There be句型中可挑选一首学生熟悉的儿歌“Bingo”,先给学生热身,然后进行猜物的游戏。通过游戏和歌曲,学生兴趣浓厚,求知欲很强。学生借助多媒体,带着问题参观学校。引人入胜的画面,生动的对话,很好地调动了学生的学习积极性。学生都踊跃就课文内容相互提问并解答,以一问一答的方式迅速理解并掌握课文。 (3)反思能否按照学生的个别差异设计教学内容,促进学生个性的发展。对接受能力较强的学生,对他们设置有一定难度的问题,让他们从不同方面领略成功的经验,从不同的角度满足了学生的英语学习方面的成就感。对接受能力较弱的学生创设更多的机会,应设计一些难度较小的问题,对他们每一点进步都及时表扬、鼓励和关怀。 (4)反思能否根据教学过程中学生学习进程以及突发事件,及时调整教学内容。例如:在教学中,我原本的设计是利用CAI呈现课文,让学生感知。可是那天上完一个班后,紧接着上另外一个班时,恰好停电了,无法使用计算机。我立即调整教学,运用己做好的人物头饰,以不同的语调,配合一定的肢体动作,表演课文中的多个角色,使教学顺利开展。部分较好的学生在整体感知课文内容后,也跃跃欲试,努力把课文的情景再现出来, 3.对教学结构的反思 (1)反思教学结构是否按照学生的身体发展水平和认知水平,划分学生认识的不同阶段。 根据教学过程中要求实现的不同认识任务,学生认识的不同阶段可分为:引起学习动机;领会知识;巩固知识;运用知识;检查知识。各阶段有其独特的功能,既紧密联系,又互相渗透。在学习中,学生从运用there be句型进行猜物逐渐迁移到谈论学校里有什么这一话题,逐步掌握课文大意;然后通过听、说、读的训练,大部分的学生能够根据提示背课文;接受能力较强的学生能够表演课文并仿照课文编对话。 (2)反思教学结构上对学生学习方式的取向,是否把接受式学习和探究式学习有效统一。 两种学习形态将认知与情感、指导与非指导、抽象思维与形象思维、能动与受动、外部物质活动与内部意识活动、个体与群体等诸因素加以协调、平衡,从而使教学过程为一个认识与发展的过程。部分学生运用己学的语言知识,探讨式地提出自己想了解的问题,层层深入,学习用英语介绍学校。其他学生在他们的带动下,积极举手、尽量回答一此简单的问题。 (3)反思是否结合教学实践选择和运用新型的教学模式,使教学达到艺术水平。 教师在一定的教学目标指导下,通过对教学过程特点和规律的研究,在具体分析学科知识结构及学生认识特点基础上灵活运用各种教学模式。要理论联系实际,勇于开拓创新,形成个人的教学风格,使科学性与艺术性结合。学生建立起对课堂教学艺术的审美观,能客观地向教师提出学习过程需要教师有效指导的地方,利于教师改进和完善教学。 4.对教学方法的反思 (1)反思是否以系统的观点为指导,选择合适的教学方法。教学方法的选择和运用要依据以下几方面:教学目的和任务,教学规律和原则,各种教学方法的功能、适用范围和使用条件,学生的实际水平和可接受水平,教师本身的素养和学校提供的条件等。如在教《COUNTRIES》国家的第一课时后,教师意识到学生对各国名称和对课文的学习颇感困难。在与学生交流的过程中,学生很活跃,提出许多建设性的提议。然后,教师把单元教学改为学生收集各国标志性的建筑物的图片,并查阅相关资料,以导游的身份做一份最有价值旅游热点报告。每个学生在全班的范围内用英语口语进行交流,完成旅游热点报告的任务。这就打破了传统教学师生单通道授受关系的局面,学生是学习的主体,是意义的主动建构者,教师是学生意义建构的帮助者、促进者。学生的主观能动性得到发挥,其运用英语交际的能力也随之得到提高。 (2)反思能否根据教学方法的外部形态和学生认识活动的特点,优化教学方法。各种教学方法都有其优点和缺点,通过反思,能有机地把各种教学方法结合起来,发挥其最大效用,全面发展学生听、说、读、写等英语学习能力。 (3)反思教法与学法是否统一,是否促进学生的自主发展。教学中,教师可引导个别接受能力强的学生分别扮演对话中的角色进行对话表演,增强真情实感。然后鼓励学生自己“找朋友”,合作学习,以竞赛的形式表演课文、学生感受到学习的自主权掌握在自己手里,自由选择空间扩大了,参与面进一步扩大。 5.对教学媒体配置与使用的反思 (1)反思教学媒体是否合理配置,每一种媒体均有其长处和短处,关键是使用者能否扬长避短。媒体是为教学服务的,一切取决于教学的需要,切忌为用媒体而选用媒体。 (2)反思教学媒体是否合理使用。一节课中不必同时使用许多种教学媒体,但所选用的媒体,尽可能最大限度地开发其功能,做到用足用活,最大限度地发挥学生的能动性。 6.对教学管理的反思 (1)反思是否运用多样化教学手段,调动学生的学习积极性。根据小学生的年龄特点和心理特征,可创设生动有趣的语言情景。例如:教授单词时:教师可采用实物、图画、简笔画创设情景。还有,教师可根据教学需要适时开展游戏、唱歌竞赛等活动,学生在轻松愉悦的环境中熟悉和巩固语言知识,并在竞赛中得到红星奖励,增强了学习的自信心。 (2)反思课堂教学管理手段是否得当,是否营造了良好的学习气氛。教师对课堂教学的管理可通过竞争机制实现。教学过程中引入竞赛机制要努力创设成功的阶梯目标,要按由易到难、由简到繁的原则。为水平参差不齐的学生创造不同层次的成功体验的机会,采取小步走、高密度,多变化、勤鼓励的方法调动学生参与课堂活动。学生通过各种形式的小组合作学习,在用中学,学中用,在反复的实践中稳步提高,把学与用有效地结合起来。

三、反思后的调控 1.反思以后如何再上好这节课 例如,自己在完成《Our school》这节课后进行反思。从整体而言,是符合小学英语新课程标准的,学生较成功地完成了学习的任务。学生通过学习,懂得如何向他人介绍自己的学校,介绍学校的专用室,培养学生爱老师、爱集体、爱学校的思想情感。但本节课也存在不足之处。时间的把握不好,精神紧张,生怕不能够上完自己准备的内容而提前讲课,而在感觉时间有余时又没有及时地调整教学进度,还是快速地讲完内容,这对整节课影响很大。以后再上这节课,让学生仿照课文自编对话,时间即可控制得当。或在备课时就要预防出现时间多的情况出现,准备音乐或短片,在时间充足的情况下让学生欣赏,既让学生放松了身心,缓解了孩子的疲劳,又将时间把握得分寸有度。 2.反思下一节课怎么做 下一节课教师首先要检查学生对上节课的知识与技能的掌握情况;接着创设情景,让学生设计自己的学校;激发学生的兴趣,让他们创造性地提出学校设计的最佳方案;最后,引导学生完成相关的听力和笔头的练习。 3.反思个人的教学技能在哪几个方面需要提高 (1)要有良好的职业道德素养,树立使学生全面发展的素质教育观。 (2)要用良好的爱心去感化学生。 (3)要不断完善个性品质,增强心理调节能力和应变能力。 (4)积累经验,使经验不断得到丰富。 综上所述,在小学英语教学中,及时地、有效地进行反思,科学。全面地分析教学过程是十分必要的。通过反思,教师能够根据实际情况及时调整教学计划,丰富教学内容,使教学计划更迎合实际需要。这对提高教师个人的教学专业水平和教学专业技能,提高教学质量,实现优化教学,培养学生的良好综合素质都有着重要的意义。 参考书目:

1、任长松《课程的反思与重建———我们需要什么样的课程观》北京大学出版社

2、《优化课堂教学的原则和方法》广州市教研室

3、宋桂月,金莺《英语课程标准教师读本》华中师范大学出版社。

4、叶澜等《教育学》北京师范大学出版社

5、沈德立等《心理学》北京师范大学出版社

推荐第10篇:双语教学规划

喀什市多乡新星小学双语教学规划

(2011年-2014年)

一、指导方针

以自治区党委、自治区人民政府《关于大力推进“双语”教学工作的决定》(新党发[2004]2号)文件精神为指导,遵照2005年2月自治区中小学“双语”教学工作会议要求,有效开展双语教学工作,特制定我校双语教学总体规划。

二、双语教学目标要求及教学模式选择

1.总体目标:培养“民汉兼通”型人才,提高少数民族学生参与社会沟通、交流与竞争的能力。

2.具体目标:

1)2011年至2014年双语班继续采用模式一教学,即数学、语文、品德与生活、音乐、美术、体育、信息技术等科目用汉语授课,其他科目采用学生母语授课。

2)2011年在双语班中选择班级开展模式二教学,即除母语文外,其他学科采用汉语授课。为培养文科双语授课教师做好经验积累和师资准备。

3)2014年开始,双语班采用模式三教学,即全部科目用汉语授课,加授维语语文课,全面推进“双语”教学。

三.班级设置

1.双语班每年招一个班40-45人。

四.双语教学工作开展内容

1.加强双语教师的培训力度。

(1)汉语强化培训:普通班授课汉语教师HSK(汉语水平测试级别)达到五级以上,双语班授课汉语教师HSK达到六级以上,双语班任科教师HSK达到五级以上;有计划、有步骤地对未达标的年龄在40岁(含40岁)教师采用脱产培训和校本培训的方式进行帮助和提高。

(2)专业技能培训:选送HSK达到五级以上的民语教师到高校进行专业技能培训,培训期满后在我校双语班进行为期半年的教学实习,配备专门的汉族指导教师进行教材处理、板书设计、教案编写、教学效果检测等方面的传、帮、带,在评课合格后方可担任双语班教师。

(3)教材教法培训:除按要求参加自治区教委、自治州教研室安排的继续教育和喀什教师培训中心的教材教法培训外,通过教研活动坚持对双语教师进行教材教法培训。

2.对双语教学工作加大教学教研指导和管理的力度。

始终坚持民汉教育统一部署、统一安排、同步发展的工作思路。双语班语文教材、教学进度等和双语班母语课程全部统一,同时双语教师和母语教师结对子,实行跟班听课制度,并积极将民汉教学教研活动融为一体,更好地开展好校本教研制度建设工作,不断提高教师研究和解决教学实际问题的能力,以便促进双语教学稳步推进。

3.进一步加强汉语学科的教学工作

继续强化汉语教学工作,抓好课堂主渠道作用,注重对学生听说读写技能的培养,又要鼓励学生尽量用汉语交流,在学校既要构筑良好的

汉语学习环境,要让学生一走进校门,就感到换了一个语言环境,时时、事事、处处都可以看到汉语、听到汉语、使用汉语,逐步让汉语成为校内师生间、学生间交际的主要语言。

4.开展对双语教师教学质量评价和学生学习质量评价工作。

四.激励与保障措施

一〉筛选双语教学的教师,明确双语教师的待遇。

1.从事双语教学的教师应该具备以下条件:

(1)小学一级教师以上职称;

(2)HSK考试达到相应级别,汉语口语表达能力较强;

(3)汉语课堂教学质量在良级以上;

(4)参加过双语教师的培训;

2.从事双语教学的教师具有以下待遇:

(1)双语教学质量评估达到良好以上的教师,其工作量在我校现行教师工作量计算办法的基础上增加50%,即课时系数为1.5;

(2)跨年级集体备课按学校有关规定适当浮动;

(3)双语教学教师在评职、年底考核时,在同等条件下予以优先推荐;

3.有以下情况出现者,取消其双语教学资格:

(1)与学校签订培训合同后参加了脱产专业培训和双语强化培训,如汉语强化培训成绩不合格,则由其个人承担费用的30%;如脱产专业培训成绩不合格,则由其个人承担费用的20%;

(2)参加培训回来的双语教师连续3次双语教学质量评估为差,将

取消其双语教师的资格;

二〉适当调配课时、选配教材

1.集中强化培训双语班老师的汉语专业术语的听力以便在小学数学科目中发挥自己的的专业术语。

2.强化汉语听力。从第一学期开始,每周增设一节汉语听力课,以便于学生提高汉语听课的质量;

3.对双语学习有困难的学生及时做好转普通班工作;

三〉加强双语教学的日常管理和质量监控

1.成立双语教学工作领导小组,由教务处和教研室负责管理和评估,双语教学工作领导小组负责检查和监督,坚持以学习促推进,以实践促提高,以考核促质量,以总结促发展与提升的原则开展工作。

2.学校设立双语教学专项经费,用于学生教材补贴和双语教师培训。

3.双语教学工作领导小组名单

组长:吐逊江.阿斯木(校长)

副组长:阿米娜.吐尔迪 (书记)

成员: 迪丽拜尔.多来提(教务处主任)

阿依古丽.伊斯拉姆刘国强(教务处副主任)

吐尔逊阿依.巴拉提(双语教研组组长)

喀什市多乡新星小学

双语教学规划

(2011年-2014年)

第11篇:双语教学工作计划

双语教学工作计划范文

一、指导思想:

以邓小平同志“教育要面向现代化、面向世界、面向未来”的重要思想为指导,积极推进双语教育实验,丰富学校教育内涵,探索行之有效的双语教育模式,使我校双语教学水平得到显著提高,使学生在学习母语阶段充分接受英语熏陶,为将来成长成为具有国际视野和国际交往能力的创新型人才奠定基础。

二、工作目标:

根据《无锡市教育局关于推进双语教育实验的指导意见》,精心组织,扎实推进双语教育工作。围绕学校双语教学实验方案进行双语教学的探索。拓宽双语课程设置,改善双语学习环境,,探索双语教学模式,形成具有校本特色的双语教育体系。

本学年内,要充分重视双语实验学校创建工作,完善双语教育环境,开设好实验课程,在“健康教育”、“牛津1a口语交际”及其他学科渗透等方面进行实验,初步形成校本特色的双语教育模式;同时着重培养一支专兼结合、富有双语教育能力的教师队伍。并通过双语教学的实施,提高学生英语口语能力、英语交往能力、英语应用能力。

三、工作要求:

2009——2010第一学期

1、统一思想认识。从行政人员到英语教师、双语教师直到全校教师学习关于双语教育的理论和市教师局关于推进双语教育实验的指导意见,统一思想认识,提高积极参与双语教育的自觉性,了解双语教育的基础知识和本校开展双语教育实验的规划。

2、选派教师参加双语教育实验的培训。

3、选定双语教育实验的学科、年级、教材。营造双语教学氛围。

4、成立校双语教育实验领导小组和教学研究小组。

5、在小学一年级开设英语口语交际课、在小学三年级开设双语健康教育课。以这二个年级为先行实验,定期开展研究活动,探索双语教育模式。

6、利用新加坡英华学校来校华文浸濡契机,进行双语交流活动。

2009——2010第二学期

1、进一步改进双语教育实验环境,优化师资配备。

2、积极开发双语教育资源,创新双语教育活动的内容和形式,大力加强

化建设,初步形成校本双语教育特色。

3、探索双语教育质量评估标准和办法,制订有关学科的《双语课堂教学评价表》并试行评估。

4、将原有五月份英语艺术周活动优化为“双语文化艺术周”活动。

5、开展一次区级以上的“双语研究展示课活动”。

6、举办英语教师和双语课教师教学设计和课件制作比赛。

主要措施

1、狠抓双语教学的常规管理

以教学过程管理为着力点,定期抽查双语教师的教学“六认真”工作,深入学生、班级,及时掌握双语教学动态,采取有效措施,确保双语教学工作正常、规范、有效进行。

2、加强双语师资队伍建设

经常性地组织双语教师进行校本培训,学习先进的教育理论,学习双语教学常用方法,使教师逐步从“经验型”向“学习型”、“研究型”转化。

加强教研组建设。教研组要重视双语教师教学,进行互动的随堂听课和专题教研活动,使双语教师的教学能力有一个质的提高。

3、每学期安排双语教学研究课展示活动。

4.优化环境建设:充分利用校园广播、电视开展双语学习活动,开展双语小报比赛、双语黑板报比赛、双语橱窗展示等活动,营造好英语学习的软环境。

双语教学工作计划范文 的相关参考:到 教学工作计划 栏目查看更多内容 >>

xiexiebang.com范文网(FANWEN.CHAZIDIAN.COM)

第12篇:双语教学之我见

双语教学之我见

当今,英语已成为我国教育学科中一门必修主科,为了更好的为学生营造语言环境,培养语言实际运用能力,双语教学应运而生。

由此,我们不禁要问:什么是双语?

双语的英文是“Bilingual”。根据英国著名的朗曼出版社出版的《朗曼应用语言学词典》所给的定义是:A person who knows and uses two languages.“双语教学”的定义是:The use of a second or foreign language in school for the teaching of content subjects.“双语”的真正含义就是指某个个人或语言社区同时懂得两种不同的语言,从而把它们运用于生活当中去的现象。

那么,双语教学又是什么?应该怎样开展?

最早的双语教学是伴随着双语现象出现的。在我国,最早的双语概念主要指各种不同的少数民族学习汉语。

随着我国国际地位的提升,在国际上的影响逐渐扩大,双语教学逐渐成为我国教育改革和发展中的一个热点项目。

在我国,双语教学是指除汉语外,用一门外语作为课堂主要用语进行学科教学,目前绝大部分是用英语。双语教学,是一种双赢的教学,通过让孩子多接触英语,全方位接触英语,促进学科教学、促进英语教学的教学。而达成各双语学科教学任务是基本前提。

第13篇:双语教学工作制度

塔尔克特小学双语教学工作制度

(2012-2013)学年

1.学校双语教研组每学期初根据学校总体计划定双语工作计划。

2.双语教研组每月至少一次开展活动及时调整工作计划,及时总结。

3.每学期至少进行一次以上的组内听课,评课活动,不断提高双语教学质量。

4.借助学校学生问卷调查,对双语教学工作进行监督考核。

5.积极配合县双语教师培训活动,争取每届培训都有双语教师参加。

6.确立推荐选拔校级双语教师骨干制度,积极为我校双语教师骨干争取县双语教师培训机会。

7.建立学校双语教师评价奖励机制,对学校双语教学工作中做出积极贡献者给予一定的奖励。

塔尔克特小学2012年9月

第14篇:双语教学工作计划

“双语教育在苏州”活动成功开展后,双语教学正在受到各所学校越来越多的重视。我们学校进行双语教学实验以来,在校领导的支持和关心下,几年来取得了一定进展,获得了一些经验。如今,我们正在以踏实、勤恳的工作态度,创新、独特的工作思路,在双语教学的道路上一步步迈进。本学期双语教研组将对双语教学实验的进一步深化提出更高的要求。针对小学双语教学自身的特点,结合几年来的双语教学经验,特制订本学期双语教学计划如下:

一、教研时间及要求

本学期,将继续实行教研组长考勤制度,如果教师有特殊事情不能参加教研活动,应在前一天通知教研组,由教研组长记好出勤记录。

二、本学期双语教学要求

1.教案。针对小学生的年龄特点,要求每位双语老师坚持写双语教案,可以逐年段的增加双语读本的使用量。在完成教学目标的前提下,采取渗透的方式在日常课堂教学中进行双语实验。关于双语的使用量,针对组内教师的水平和所教授学年段、学科的特点,初定为每学期完成两篇比较有质量的教案设计。

2.上课。我们研究的课题是双语教学的课堂有效性问题。因此,在本学期,我们应该贯彻双语教学课堂有效性,将双语教学落到实处。影响双语教学有效与否的重要因素之一是学生有多少机会进行双语学习。丰富的学习机会,增加学生的“积极学习时间”,提高双语教学的有效性。教师应该鼓励他们说英语,最大限度地进行口语锻炼。双语教学不同于英语教学,它只是在课堂上作为一种工具去使用,其目的是提高学生口语的实际应用能力。因此,无论哪一个学科的双语教学,都应该紧密联系学生的生活,让学生真正做到有所收获。同时,真实的学生生活用语对小学生来说,是最宝贵的教学素材,有利于学生将所学最快的应用到生活中去。双语教学的实施,主要还是由各任课教师渗透到每一天的日常教学中.

3.听评课。本学期希望各位教师按照教研活动安排,提前做好上课、听课准备,同时,利用教研活动时间,对示范课进行讲评。

以上是双语教研组本学期的教研计划,我们将力保完成教研内容的前提下,加强计划的实效性,以便更好的推动双语教学改革的实验步伐……

第15篇:双语教学工作计划

一、指导思想:

以邓小平同志“教育要面向现代化、面向世界、面向未来”的重要思想为指导,积极推进双语教育实验,丰富学校教育内涵,探索行之有效的双语教育模式,使我校双语教学水平得到显著提高,使学生在学习母语阶段充分接受英语熏陶,为将来成长成为具有国际视野和国际交往能力的创新型人才奠定基础。

二、工作目标:

根据《无锡市教育局关于推进双语教育实验的指导意见》,精心组织,扎实推进双语教育工作。围绕学校双语教学实验方案进行双语教学的探索。拓宽双语课程设置,改善双语学习环境,,探索双语教学模式,形成具有校本特色的双语教育体系。

本学年内,要充分重视双语实验学校创建工作,完善双语教育环境,开设好实验课程,在“健康教育”、“牛津1a口语交际”及其他学科渗透等方面进行实验,初步形成校本特色的双语教育模式;同时着重培养一支专兼结合、富有双语教育能力的教师队伍。并通过双语教学的实施,提高学生英语口语能力、英语交往能力、英语应用能力。

三、工作要求:

2006——2007第一学期

1、统一思想认识。从行政人员到英语教师、双语教师直到全校教师学习关于双语教育的理论和市教师局关于推进双语教育实验的指导意见,统一思想认识,提高积极参与双语教育的自觉性,了解双语教育的基础知识和本校开展双语教育实验的规划。

2、选派教师参加双语教育实验的培训。

xiexiebang.com范文网[CHAZIDIAN.COM]

3、选定双语教育实验的学科、年级、教材。营造双语教学氛围。

4、成立校双语教育实验领导小组和教学研究小组。

5、在小学一年级开设英语口语交际课、在小学三年级开设双语健康教育课。以这二个年级为先行实验,定期开展研究活动,探索双语教育模式。

6、利用新加坡英华学校来校华文浸濡契机,进行双语交流活动。

2006——2007第二学期

1、进一步改进双语教育实验环境,优化师资配备。

2、积极开发双语教育资源,创新双语教育活动的内容和形式,大力加强

化建设,初步形成校本双语教育特色。

3、探索双语教育质量评估标准和办法,制订有关学科的《双语课堂教学评价表》并试行评估。

4、将原有五月份英语艺术周活动优化为“双语文化艺术周”活动。

5、开展一次区级以上的“双语研究展示课活动”。

6、举办英语教师和双语课教师教学设计和课件制作比赛。

主要措施

1、狠抓双语教学的常规管理

以教学过程管理为着力点,定期抽查双语教师的教学“六认真”工作,深入学生、班级,及时掌握双语教学动态,采取有效措施,确保双语教学工作正常、规范、有效进行。

2、加强双语师资队伍建设

经常性地组织双语教师进行校本培训,学习先进的教育理论,学习双语教学常用方法,使教师逐步从“经验型”向“学习型”、“研究型”转化。

加强教研组建设。教研组要重视双语教师教学,进行互动的随堂听课和专题教研活动,使双语教师的教学能力有一个质的提高。

3、每学期安排双语教学研究课展示活动。

4.优化环境建设:充分利用校园广播、电视开展双语学习活动,开展双语小报比赛、双语黑板报比赛、双语橱窗展示等活动,营造好英语学习的软环境。

具体工作:

2006年九月份:

1、制订实验计划,成立校双语教育实验领导小组和教学研究小组。

2、进行双语校本培训和校外培训,为双语教学提供保证。

3、学科双语教师与英语专业教师“结对子”。

2006年十月份:

1、着重进行双语环境布置。

2、双语学科听课调研活动。

3、双语教师继续校本培训。

2006年十一月份:

1、精心组织新加坡英华学校来校“华文浸濡”活动。

2、开展中新双语教学活动和专题研讨。

共2页,当前第1页12

第16篇:双语教学工作计划

一、指导思想:

以邓小平同志“教育要面向现代化、面向世界、面向未来”的重要思想为指导,积极推进双语教育实验,丰富学校教育内涵,探索行之有效的双语教育模式,使我校双语教学水平得到显著提高,使学生在学习母语阶段充分接受英语熏陶,为将来成长成为具有国际视野和国际交往能力的创新型人才奠定基础。

二、工作目标:

根据《无锡市教育局关于推进双语教育实验的指导意见》,精心组织,扎实推进双语教育工作。围绕学校双语教学实验方案进行双语教学的探索。拓宽双语课程设置,改善双语学习环境,,探索双语教学模式,形成具有校本特色的双语教育体系。

本学年内,要充分重视双语实验学校创建工作,完善双语教育环境,开设好实验课程,在“健康教育”、“牛津1a口语交际”及其他学科渗透等方面进行实验,初步形成校本特色的双语教育模式;同时着重培养一支专兼结合、富有双语教育能力的教师队伍。并通过双语教学的实施,提高学生英语口语能力、英语交往能力、英语应用能力。

三、工作要求:

2009——2010第一学期

1、统一思想认识。从行政人员到英语教师、双语教师直到全校教师学习关于双语教育的理论和市教师局关于推进

双语教育实验的指导意见,统一思想认识,提高积极参与双语教育的自觉性,了解双语教育的基础知识和本校开展双语教育实验的规划。

2、选派教师参加双语教育实验的培训。

3、选定双语教育实验的学科、年级、教材。营造双语教学氛围。

4、成立校双语教育实验领导小组和教学研究小组。

5、在小学一年级开设英语口语交际课、在小学三年级开设双语健康教育课。以这二个年级为先行实验,定期开展研究活动,探索双语教育模式。

6、利用新加坡英华学校来校华文浸濡契机,进行双语交流活动。

2009——2010第二学期

1、进一步改进双语教育实验环境,优化师资配备。

2、积极开发双语教育资源,创新双语教育活动的内容和形式,大力加强

化建设,初步形成校本双语教育特色。

3、探索双语教育质量评估标准和办法,制订有关学科的《双语课堂教学评价表》并试行评估。

4、将原有五月份英语艺术周活动优化为“双语文化艺术周”活动。

5、开展一次区级以上的“双语研究展示课活动”。

6、举办英语教师和双语课教师教学设计和课件制作比赛。

主要措施

1、狠抓双语教学的常规管理

以教学过程管理为着力点,定期抽查双语教师的教学“六认真&rdqu

o;工作,深入学生、班级,及时掌握双语教学动态,采取有效措施,确保双语教学工作正常、规范、有效进行。

2、加强双语师资队伍建设

经常性地组织双语教师进行校本培训,学习先进的教育理论,学习双语教学常用方法,使教师逐步从“经验型”向“学习型”、“研究型”转化。

加强教研组建设。教研组要重视双语教师教学,进行互动的随堂听课和专题教研活动,使双语教师的教学能力有一个质的提高。

结合有关部门的教学新秀教学能手、、学科带头人的评审工作,尽可能多地推荐双语教师能评,力保有1-2位评为市级教学能手。使双语教师的教学工作走向成熟。

3、每学期安排双语教学研究课展示活动。

4.优化环境建设:充分利用校园广播、电视开展双语学习活动,开展双语小报比赛、双语黑板报比赛、双语橱窗展示等活动,营造好英语学习的软环境。

第17篇:双语教学工作计划

巴乡小学双语教学工作计划

双语教学正在受到越来越多的重视。我们学校进行双语教学实验以来,在校领导的支持和关心下,几年来取得了一定进展,获得了一些经验。如今,我们正在以踏实、勤恳的工作态度,创新、独特的工作思路,在双语教学的道路上一步步迈进。本学期双语教务处将对双语教学实验的进一步深化提出更高的要求。针对双语教学自身的特点,结合几年来的双语教学经验,特制订本学期双语教学计划如下:

一、本学期双语教学要求

1.教案。针对学科特点,要求每位双语老师坚持写汉语教案,可以逐年段的增加双语读本的使用量。在完成教学目标的前提下,采取渗透的方式在日常课堂教学中进行双语教学。关于双语的使用量,针对教师的水平和所教授学年段、学科的特点,初定为每学期完成两篇比较有质量的教案设计。

2.上课。我们研究的课题是双语教学的课堂有效性问题。因此,在本学期,我们应该贯彻双语教学课堂有效性,将双语教学落到实处。影响双语教学有效与否的重要因素之一是学生有多少机会进行双语学习。丰富的学习机会,增加学生的“积极学习时间”,提高双语教学的有效性。因此,无论哪一个学科的双语教学,都应该紧密联系学生的生活,让学生真正做到有所收获。双语教学的实施,主要还是由各任课教师渗透到每一天的日常教学中.

3.听评课。本学期希望各位教师按照学校的安排,提前做好上课、听课准备,同时,利用教研活动时间,对示范课进行讲评的同时配合结对教师进行交流教学方法。

以上是双语教学本学期的教学计划,我们将力保完成教学内容的前提下,加强计划的实效性,以便更好的推动双语教学改革的实验步伐。

巴音库鲁提乡小学

2010年9月3日

第18篇:双语教学工作制度

Xx双语教学工作制度

全面落实教育教学方针,实实加强对教育教学工作的管理,把教学按照教育教学规定科学的开展。深入教学探究,按要求进行目标教学和新课改教学。提高教师的双语教学能力,高度重视双语教学工作。在校内和广大群众之间共同创建双语教学时促进民族团结和提高民族素质的建设的基础意识。更加严格要求我校的双语教学工作,层层完善双语教学工作。为在双语教育教学工作中取得更佳的成绩制定了此项工作制度。 工作制度如下:

一、我校的双语教学工作,保证在上级部门的部署和我工作计划下执

行。

二、

三、建立双语教学工作制度的同时对双语教学工作实行目标管理。对相关部门分工明确,人头制定责任,协调配合保证促进双语教学

质量。

四、

五、

六、严格要求双语教学工作人员认真履行岗位职责。对双语教育教学工作,组织建立监督检查小组,并制定相关措施。 并对双语教师按照计划进行培训,严格要求双语教师达到双语教学

要求,具备hsk或普通话等级证书。

七、制定明确的奖罚制度,对成绩突出者给予物质和精神奖励,对成绩

落后不合格者进行追究责任同时给予相对的处罚。

第19篇:双语教学工作计划

一、指导思想:

以邓小平同志“教育要面向现代化、面向世界、面向未来”的重要思想为指导,积极推进双语教育实验,丰富学校教育内涵,探索行之有效的双语教育模式,使我校双语教学水平得到显著提高,使学生在学习母语阶段充分接受英语熏陶,为将来成长成为具有国际视野和国际交往能力的创新型人才奠定基础,双语教学工作计划。

二、工作目标:

根据《无锡市教育局关于推进双语教育实验的指导意见》,精心组织,扎实推进双语教育工作。围绕学校双语教学实验方案进行双语教学的探索。拓宽双语课程设置,改善双语学习环境,,探索双语教学模式,形成具有校本特色的双语教育体系。

本学年内,要充分重视双语实验学校创建工作,完善双语教育环境,开设好实验课程,在“健康教育”、“牛津1A口语交际”及其他学科渗透等方面进行实验,初步形成校本特色的双语教育模式;同时着重培养一支专兼结合、富有双语教育能力的教师队伍。并通过双语教学的实施,提高学生英语口语能力、英语交往能力、英语应用能力。

三、工作要求:

2006——2007第一学期

1、统一思想认识。从行政人员到英语教师、双语教师直到全校教师学习关于双语教育的理论和市教师局关于推进双语教育实验的指导意见,统一思想认识,提高积极参与双语教育的自觉性,了解双语教育的基础知识和本校开展双语教育实验的规划。

2、选派教师参加双语教育实验的培训。

3、选定双语教育实验的学科、年级、教材。营造双语教学氛围。

4、成立校双语教育实验领导小组和教学研究小组。

5、在小学一年级开设英语口语交际课、在小学三年级开设双语健康教育课。以这二个年级为先行实验,定期开展研究活动,探索双语教育模式。

6、利用新加坡英华学校来校华文浸濡契机,进行双语交流活动。

2006——2007第二学期

1、进一步改进双语教育实验环境,优化师资配备。

2、积极开发双语教育资源,创新双语教育活动的内容和形式,大力加强

化建设,初步形成校本双语教育特色。

3、探索双语教育质量评估标准和办法,制订有关学科的《双语课堂教学评价表》并试行评估。

4、将原有五月份英语艺术周活动优化为“双语文化艺术周”活动。

5、开展一次区级以上的“双语研究展示课活动”,教学工作计划《双语教学工作计划》。

6、举办英语教师和双语课教师教学设计和课件制作比赛。

主要措施

1、狠抓双语教学的常规管理

以教学过程管理为着力点,定期抽查双语教师的教学“六认真”工作,深入学生、班级,及时掌握双语教学动态,采取有效措施,确保双语教学工作正常、规范、有效进行。

2、加强双语师资队伍建设

经常性地组织双语教师进行校本培训,学习先进的教育理论,学习双语教学常用方法,使教师逐步从“经验型”向“学习型”、“研究型”转化。

加强教研组建设。教研组要重视双语教师教学,进行互动的随堂听课和专题教研活动,使双语教师的教学能力有一个质的提高。

结合有关部门的教学新秀教学能手、、学科带头人的评审工作,尽可能多地推荐双语教师能评,力保有1-2位评为市级教学能手。使双语教师的教学工作走向成熟。

3、每学期安排双语教学研究课展示活动。

4.优化环境建设:充分利用校园广播、电视开展双语学习活动,开展双语小报比赛、双语黑板报比赛、双语橱窗展示等活动,营造好英语学习的软环境。

具体工作:

2006年九月份:

1、制订实验计划,成立校双语教育实验领导小组和教学研究小组。

2、进行双语校本培训和校外培训,为双语教学提供保证。

3、学科双语教师与英语专业教师“结对子”。

2006年十月份:

1、着重进行双语环境布置。

2、双语学科听课调研活动。

3、双语教师继续校本培训。

2006年十一月份:

1、精心组织新加坡英华学校来校“华文浸濡”活动。

2、开展中新双语教学活动和专题研讨。

本新闻共2页,当前在第1页1

23、举办双语小报比赛。

4、双语教师进行课堂用语及学科专业用语的培训。

2006年十二月、

1、班级英语角展示比赛。

2、双语教师学期教学工作小结交流。

3、完善有关学科的《双语课堂教学评价表》并试用。

2007年一月份:

1、总结学期双语研究,撰写个人研究总结和学科组总结。

2、汇总实验素材。

3、学校对有关研究成员进行评价和奖励。

2007年

二、三月份::

1、教研组制订学期研究计划。

2、完善双语环境布置。

3、双语学科听课调研活动。

4、邀请教研中心专家对教师进行校本培训。

2007年四月份:

1、与教科室协作,开展双语教育课题研究,争取市级立项课题。

2、双语电视节目完善工作。

2007年五月份:

1、“双语文化艺术周”活动。

2、区级“双语研究展示课活动”。

2007年

六、七月份

1、举办英语教师和双语课教师教学设计和课件制作比赛。

2、主管部门撰写年度研究总结,并提出下阶段实验初步构想。

3、撰写个人研究总结和学科组总结。

4、对有关研究成员进行评价和奖励。

本新闻共2页,当前在第2页12

第20篇:双语教学工作计划

一、指导思想:

以邓小平同志“教育要面向现代化、面向世界、面向未来”的重要思想为指导,积极推进双语教育实验,丰富学校教育内涵,探索行之有效的双语教育模式,使我校双语教学水平得到显著提高,使学生在学习母语阶段充分接受英语熏陶,为将来成长成为具有国际视野和国际交往能力的创新型人才奠定基础。

二、工作目标:

根据《无锡市教育局关于推进双语教育实验的指导意见》,精心组织,扎实推进双语教育工作。围绕学校双语教学实验方案进行双语教学的探索。拓宽双语课程设置,改善双语学习环境,,探索双语教学模式,形成具有校本特色的双语教育体系。

本学年内,要充分重视双语实验学校创建工作,完善双语教育环境,开设好实验课程,在“健康教育”、“牛津1A口语交际”及其他学科渗透等方面进行实验,初步形成校本特色的双语教育模式;同时着重培养一支专兼结合、富有双语教育能力的教师队伍。并通过双语教学的实施,提高学生英语口语能力、英语交往能力、英语应用能力。

三、工作要求:

2006——2007第一学期

1、统一思想认识。从行政人员到英语教师、双语教师直到全校教师学习关于双语教育的理论和市教师局关于推进双语教育实验的指导意见,统一思想认识,提高积极参与双语教育的自觉性,了解双语教育的基础知识和本校开展双语教育实验的规划。

2、选派教师参加双语教育实验的培训。

3、选定双语教育实验的学科、年级、教材。营造双语教学氛围。

4、成立校双语教育实验领导小组和教学研究小组。

5、在小学一年级开设英语口语交际课、在小学三年级开设双语健康教育课。以这二个年级为先行实验,定期开展研究活动,探索双语教育模式。

6、利用新加坡英华学校来校华文浸濡契机,进行双语交流活动。

2006——2007第二学期

1、进一步改进双语教育实验环境,优化师资配备。

2、积极开发双语教育资源,创新双语教育活动的内容和形式,大力加强

化建设,初步形成校本双语教育特色。

3、探索双语教育质量评估标准和办法,制订有关学科的《双语课堂教学评价表》并试行评估。

4、将原有五月份英语艺术周活动优化为“双语文化艺术周”活动。

5、开展一次区级以上的“双语研究展示课活动”。

6、举办英语教师和双语课教师教学设计和课件制作比赛。

主要措施

1、狠抓双语教学的常规管理

以教学过程管理为着力点,定期抽查双语教师的教学“六认真”工作,深入学生、班级,及时掌握双语教学动态,采取有效措施,确保双语教学工作正常、规范、有效进行。

2、加强双语师资队伍建设

经常性地组织双语教师进行校本培训,学习先进的教育理论,学习双语教学常用方法,使教师逐步从“经验型”向“学习型”、“研究型”转化。

加强教研组建设。教研组要重视双语教师教学,进行互动的随堂听课和专题教研活动,使双语教师的教学能力有一个质的提高。

结合有关部门的教学新秀教学能手、、学科带头人的评审工作,尽可能多地推荐双语教师能评,力保有1-2位评为市级教学能手。使双语教师的教学工作走向成熟。

3、每学期安排双语教学研究课展示活动。

4.优化环境建设:充分利用校园广播、电视开展双语学习活动,开展双语小报比赛、双语黑板报比赛、双语橱窗展示等活动,营造好英语学习的软环境。

具体工作:

2006年九月份:

1、制订实验计划,成立校双语教育实验领导小组和教学研究小组。

2、进行双语校本培训和校外培训,为双语教学提供保证。

3、学科双语教师与英语专业教师“结对子”。

2006年十月份:

1、着重进行双语环境布置。

2、双语学科听课调研活动。

3、双语教师继续校本培训。

2006年十一月份:

1、精心组织新加坡英华学校来校“华文浸濡”活动。

2、开展中新双语教学活动和专题研讨。

3、举办双语小报比赛。

4、双语教师进行课堂用语及学科专业用语的培训。

2006年十二月、

1、班级英语角展示比赛。

2、双语教师学期教学工作小结交流。

3、完善有关学科的《双语课堂教学评价表》并试用。

2007年一月份:

1、总结学期双语研究,撰写个人研究总结和学科组总结。

2、汇总实验素材。

3、学校对有关研究成员进行评价和奖励。

2007年

二、三月份::

1、教研组制订学期研究计划。

2、完善双语环境布置。

3、双语学科听课调研活动。

4、邀请教研中心专家对教师进行校本培训。

2007年四月份:

1、与教科室协作,开展双语教育课题研究,争取市级立项课题。

2、双语电视节目完善工作。

2007年五月份:

1、“双语文化艺术周”活动。

2、区级“双语研究展示课活动”。

2007年

六、七月份

1、举办英语教师和双语课教师教学设计和课件制作比赛。

2、主管部门撰写年度研究总结,并提出下阶段实验初步构想。

3、撰写个人研究总结和学科组总结。

4、对有关研究成员进行评价和奖励。

《双语教学课件.doc》
双语教学课件
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

相关推荐

学校工作总结教学工作总结教师工作总结班主任工作总结教学心得体会师德师风建设教学试卷教案模板教学设计教学计划教学评语教学课件学校管理
下载全文