机械加工工艺范文

2022-10-01 来源:其他范文收藏下载本文

推荐第1篇:机械加工工艺

机械加工工艺

是指用机械加工的方法改变毛坯的形状、尺寸、相对位置和性质使其成为合格零件的全过程,加工工艺是工人进行加工的一个依据。具体概念

机械加工工艺流程是工件或者零件制造加工的步骤,采用机械加工的方法,直接改变毛坯的形状、尺寸和表面质量等,使其成为零件的过程称为机械加工工艺过程。比如一个普通零件的加工工艺流程是粗加工-精加工-装配-检验-包装,就是个加工的笼统的流程。

机械加工工艺就是在流程的基础上,改变生产对象的形状、尺寸、相对位置和性质等,使其成为成品或半成品,是每个步骤,每个流程的详细说明,比如,上面说的,粗加工可能包括毛坯制造,打磨等等,精加工可能分为车,钳工,铣床,等等,每个步骤就要有详细的数据了,比如粗糙度要达到多少,公差要达到多少。

机械加工工艺流程

机械加工工艺规程是规定零件机械加工工艺过程和操作方法等的工艺文件之一,它是在具体的生产条件下,把较为合理的工艺过程和操作方法,按照规定的形式书写成工艺文件,经审批后用来指导生产。机械加工工艺规程一般包括以下内容:工件加工的工艺路线、各工序的具体内容及所用的设备和工艺装备、工件的检验项目及检验方法、切削用量、时间定额等。制订工艺规程的步骤

1) 计算年生产纲领,确定生产类型。

2) 分析零件图及产品装配图,对零件进行工艺分析。

3) 选择毛坯。

4) 拟订工艺路线。

5) 确定各工序的加工余量,计算工序尺寸及公差。

6) 确定各工序所用的设备及刀具、夹具、量具和辅助工具。

7) 确定切削用量及工时定额。

8) 确定各主要工序的技术要求及检验方法。

9) 填写工艺文件。

在制订工艺规程的过程中,往往要对前面已初步确定的内容进行调整,以提高经济效益。在执行工艺规程过程中,可能会出现前所未料的情况,如生产条件的变化,新技术、新工艺的引进,新材料、先进设备的应用等,都要求及时对工艺规程进行修订和完善。

推荐第2篇:机械加工工艺

工艺过程:改变生产对象的形状、尺寸、相对位置和性质等,使其成为成品或半成品的过程。

生产过程:将原材料变为成品之间各个相互关联的劳动过程。

工序:指一个人或一组工人在一个工作地点,对同一个或同时对几个工件所连续完成的那一部分工艺过程。

工位:为了完成一定的工序部分,一次装夹工件后,工件与夹具或设备的可动部分一起相对刀具或设备的固定部分所占据的每一个位置。

工步:通常,在加工表面和加工工具不变的情况下,所连续完成的那一部分工序内容称为工步。

走刀:在一个工步内,若被加工表面需切去的金属层很厚,可分几次切削,每切削一次为一次走刀。

生产纲领:企业在计划内应当生产的产品产量和进度计划。

生产类型:企业(或车间、工段、班组、工作地)生产专业化程度的分类,一般分为单件生产、成批生产和大量生产三种类型。

工艺文件:

机械加工工艺过程卡片:

机械加工工艺卡片:

机械加工工序卡片:

工艺规程:

时间定额:在一定生产条件下,规定生产一件产品或完成一道工序所需要消耗的时间。

推荐第3篇:机械加工工艺心得体会

加工工艺实训心得体会

今天,我们开始了为期2个礼拜的加工工艺实训,这次实训主要是围绕一个零件工艺的加工,CAD制图,SoildWorks零件图,工程图,制作工艺卡片,制作夹具等方面来检验自己是否掌握的具体完全。

开始的前几天,指导老师要我们先找好6个成员作为这两个礼拜的小组,最后为了公平起见,我们就按学号排列出了6成员,选出一个代表作为组长,然后经小组讨论选出了我们组要完成的任务图。没多久,指导老师就给我们布置了各种各项的任务,查找资料等等。

一开始,我们按照小组顺序,依次上台跟指导老师介绍讲解各组的加工工艺步骤,通过各位成员的努力,我们很好的完成了这个任务,美中不足的一点就是一个关于孔20能不能铸造的问题。最后指导老师也提到了夹具的设计,这是我们大家都没想到的问题,也是接下来我们重点去解决的问题。

根据我们小组的建议,前几天我们一直在制作CAD,而我因为没有电脑,再加上CAD好久没练习过,跟SoildWorks制图过程搞混淆,制作速度明显比其他成员慢了好多,没办法,我只能在课余时间根据自己所缺乏的知识点又重新复习了一遍,加上自身的摸索,终于把以前遗忘的知识点都重新掌握了,有点艰难,但我还是在短期内克服了过来,最终 也赶上了其他成员的步伐,在预定的时间内,完成了各自的CAD制图。

接下来,我们就按照指导书上写的,根据修改尺寸的不同,各自画出了我们的SoildWorks零件图,由于这个知识我们上学期刚实训学习过,虽然只有仅仅的两周,但自我感觉,掌握的程度还不错,所以分析好尺寸后,很快就把零件图给画好了,没有遇到多大的困难,全部一气呵成。 按照指导书上的要求,由于加工工艺卡片只要求小组成员完成一份就可以了,我们的小组成员根据分配,各自去制作一张工艺卡片,我们大家都知道,这种卡片,本学期我们才刚刚学,而且各自掌握的并不是太好,要通过查阅资料,小组讨论的各方面去完成,功夫不负有心人,最终,我们完成了,虽然感觉并不怎么美观,也不知道对还是错,反正是完成任务了。

这些准备工序都完成后,指导老师就一组一组的听我们讲解加工工艺的步骤等等...问题回答的也还算可以。

最后几天,我们根据指导老师的要求,要完成一个适合本工件的夹具。这个对我们来说,虽然难度不大,但是要想做好却并不容易,这期间我也参考了其他组的设计方案,都挺不错的。我为我们组设计的,是两个大小不同的半圆,半圆两端各有两螺纹孔,用来固定工件的。还设计了一个定位销,一个压块。由于现实生活中,并没有这样的夹具,最终我的方案被小组给否决了。通过指导老师的讲解,其实我只要把那两个半弧换成V型块,这个方案就非常完美了,心里还是有点自喜,毕竟我设计的更类似指导老师的。

最后几天,我们各自提交了各组的作业,指导老师也按照自己的教学方法,向每组提了问题来查看各小组是否都掌握了。当然,有没答上来的,我始终相信“天道酬勤”。付出了,都会在现实生活中可以体会出来的,这次实训,虽然难度重重,通过自身的努力,小组成员的讨论合作,确实收获了不少。不管是学习,还是不久即将到来的实习,上班,都应该认真学习,讨论,总结,我会把这次实训牢记在心,要很好的应用在未来的工作岗位上。

丁以雷

推荐第4篇:机械加工工艺路线

机械加工工艺路线

机械加工工艺规程的制定,大体可分为两个步骤。首先是拟定零件加工的工艺路线,然后再确定每一道工序的工序尺寸、所用设备和工艺装备以及切削规范、工时定额等。这两个步骤是互相联系的,应进行综合分析。

工艺路线的拟定是制定工艺过程的总体布局,主要任务是选择各个表面的加工方法,确定各个表面的加工顺序,以及整个工艺过程中工序数目的多少等。

拟定工艺路线的一般原则

1、先加工基准面

零件在加工过程中,作为定位基准的表面应首先加工出来,以便尽快为后续工序的加工提供精基准。称为“基准先行”。

2、划分加工阶段

加工质量要求高的表面,都划分加工阶段,一般可分为粗加工、半精加工和精加工三个阶段。主要是为了保证加工质量;有利于合理使用设备;便于安排热处理工序;以及便于时发现毛坯缺陷等。

3、先孔后面

[1] 对于箱体、支架和连杆等零件应先加工平面后加工孔。这样就可以以平面定位加工孔,保证平面和孔的位置精度,而且对平面上的孔的加工带来方便。

4、主要表面的光整加工(如研磨、珩磨、精磨等),应放在工艺路线最后阶段进行,以免光整加工的表面,由于工序间的转运和安装而受到损伤。

上述为工序安排的一般情况。有些具体情况可按下列原则处理。

(1)、为了保证加工精度,粗、精加工最好分开进行。因为粗加工时,切削量大,工件所受切削力、夹紧力大,发热量多,以及加工表面有较显著的加工硬化现象,工件内部存在着较大的内应力,如果粗、粗加工连续进行,则精加工后的零件精度会因为应力的重新分布而很快丧失。对于某些加工精度要求高的零件。在粗加工之后和精加工之前,还应安排低温退火或时效处理工序来消除内应力。

(2)、合理地选用设备。粗加工主要是切掉大部分加工余量,并不要求有较高的加工精度,所以粗加工应在功率较大、精度不太高的机床上进行,精加工工序则要求用较高精度的机床加工。粗、精加工分别在不同的机床上加工,既能充分发挥设备能力,又能延长精密机床的使用寿命。

(3)、在机械加工工艺路线中,常安排有热处理工序。热处理工序位置的安排如下:为改善金属的切削加工性能,如退火、正火、调质等,一般安排在机械加工前进行。为消除内应力,如时效处理、调质处理等,一般安排在粗加工之后,精加工之前进行。为了提高零件的机械性能,如渗碳、淬火、回火等,一般安排在机械加工之后进行。如热处理后有较大的变形,还须安排最终加工工序。

推荐第5篇:机械加工工艺教案

第1章

金属切削加工基础

备课时间:09-2-14

上课时间:09-2-16 教学目的:

1、新学期刚开始,充分调动学生的积极性,并讲解学习本课程的方法与技巧。

2、掌握切削运动的类型、切削用量三要素的概念。教学重点:切削用量三要素 课时:2课时 授课内容:

1.1.1 切削运动

 金属切削加工是用切削工具将坯料或工件上的多余材料切除,以获得合乎设计要求的工件的一种加工方法。

(复习金属切削加工和数控加工在机械制造中的地位) 1.1 切削运动及切削要素

机床为实现切削加工所必需具有的加工工件与工件间的相对运动。它包括主运动和进给运动。

主运动(复习什么是主运动)

主运动的速度即切削速度:主运动的线速度。

dwnvc 1000

(分析推导过程,分析根据工件材料查表时只能查到切削速度,而不能直接查到转速的原因)

(二)进给运动

 进给运动速度:指切削刃选定点相对于工件进给运动的瞬时速度,用vf表示 例:外圆车削时,进给运动速度常常用进给量f来表述,单位:mm / r

刨削时,进给运动速度用每一行程多少毫米来表述,单位为mm / str。

铣削时,进给运动速度常用每齿进给量f来表述,单位:mm/z

进给速度vf、进给量f、每齿进给量fz 和刀具齿数Z之间的关系如下:

vf = nf

1.1.2 切削时形成的表面

车削加工过程中工件上有三个不断变化着的表面: (1)待加工表面 (2)已加工表面 (3)过渡表面 1.1.3

切削用量 (1)切削速度vc (2)背吃刀量ap(分析车削和铣削的ap有什么不同) (3)进给量f (解释切削用量三要素对加工的影响。)

备课时间:09-2-18

上课时间:09-2-19 教学目的:

1、掌握刀具的组成及几何角度的确定方法

2、熟悉刀具的工作角度对加工的影响。

教学重点:几何角度的确定方法。

教学难点:刀具的工作角度对加工的影响。 课时:2课时 授课内容:

1.2 刀具组成及几何角度

(首先让学生传递着观察车刀) 1.刀具切削部分的组成要素 刀杆:起夹持作用 刀头:(三面) 前刀面:切屑流过的表面

主后刀面:刀具上与加工表面相对的表面

副后刀面:刀具上与已加工表面相对的表面

(两刃)

主切削刃:刀具上前刀面与主后刀面的交线

副切削刃:刀具上前刀面与副后刀面的交线

(一尖)

主切削刃与副切削刃的交点

(结合刀具实物和图片与学生一起分析并提问) 2.车刀切削角度的坐标平面

基面Pr:通过主切削刃上的某一点,与主运动方向相垂直的平面。

车刀的基面平行于刀体底面。

切削平面Ps:通过主切削刃上的某一点,与过渡表面相切并垂直于基面的平面。 正交平面Po:通过主切削刃上的某一点,并同时垂直于基面和切削平面的平面。 (结合幻灯片与学生一起分析并提问) 3.刀具的主要标注角度 1) 前角(0)

前刀面和基面之间的夹角。 2)后角(0)

主后刀面和切削平面之间的夹角。

(直接分析出前角和后角的正、负、零。并要求学生在车刀上分析出前角和后角的正、负时的形状,及其大、小对加工的影响。) 3)主偏角(kr)

主切削刃与进给方向间的夹角 4)副偏角(kr’)

负切削刃与进给方向的夹角 5)刃倾角(S)

主切削刃与基面之间的夹角。在切削平面内度量

4、刀具的工作角度

 进给运动对刀具工作角度的影响

使刀具实际工作后角减小,工作前角增大

 刀具安装高低对刀具工作角度的影响

 刀杆中心面(线)不垂直于进给运动方向的影响

由此分析出刀具的安装方法:

1、刀尖的高度应与工件中心的高度一致。

2、刀杆中心面(线)应垂直于进给运动方向。

备课时间:09-2-22

上课时间:09-2-23 教学目的:

1、了解切削层参数

2、掌握切屑的形成过程及切屑种类

3、熟悉积屑瘤的形成及其对切削加工的影响。

教学难点:切屑的形成过程。

教学重点:切屑种类和积屑瘤的形成及其对切削加工的影响。 课时:2课时 授课内容:

5、切削层参数

(1) 切削层公称厚度hD :垂直于过渡表面的切削层尺寸 。

切削层截面的切削厚度为: hD = f sinκr

(2) 切削层公称宽度bD

切削层截面的公称切削宽度为:bD = ap/sinκr (3) 切削层公称横截面积

AD=hD bD= f sinκr .ap/sinκr= f ap

1.3 金属的切削过程

金属在切削过程中,会出现一系列物理现象,如金属变形、切削力、切削热、刀具磨损等,这些都是以切屑形成过程为基础而生产中出现的许多问题,如积屑瘤、振动、卷屑、断屑等,都与切削过程密切相关。 1.3.1.切屑的形成过程及切屑种类

1、切屑形成过程:对塑性金属进行切削时,切屑的形成过程就是切削层金属的变形过程。

2、切屑的类型及切屑控制

类型:带状切屑、挤裂切屑、单元切屑、崩碎切屑

(预习第10页表1-1,总结出哪种切屑较好,怎样控制切屑的类型。)

切屑控制:

“不可接受”的切屑:切削条件恶劣导致。影响主要有拉伤工件的已加工表面;划伤机床;造成刀具的早期破损;影响操作者的安全。

切屑控制:在切削加工中采取适当的措施来控制切屑的卷曲、流出与折断,使形成“可接受”的良好屑形。

“可接受”的切屑标准:不妨碍正常的加工;不影响操作者的安全;易于清理、存

放和搬运。

(1) 切屑的形态可随切削条件不同而改变

(2) 可控制切削条件,使切屑形态向有利于生产的方面转化,保证切削加工的顺利进行和工件的加工质量:增大前角、提高切削速度、减小进给量 3.积屑瘤

在一定的切削速度和保持连续切削的情况下,加工塑性材料时,在刀具前刀面常常粘结一块剖面呈三角状的硬块,这块金属被称为积屑瘤。 (1)积屑瘤的形成

切削过程中,由于金属的挤压和强烈摩擦,使切屑与前刀面之间产生很大的应力和很高的切削温度。当应力和温度条件适当时,切屑底层与前刀面之间的摩擦力很大,使得切屑底层流出速度变得缓慢,形成一层很薄的“滞流层”,当滞流层与前刀面的摩擦阻力超过切屑内部的结合力时,滞流层的金属与切屑分离而粘附在切削刃附近形成积屑瘤.(2)积屑瘤对切削加工的影响 有利方面:保护刀具、增加工作前角

不利方面:影响工件尺寸精度、影响工件表面粗造度 (3). 积屑瘤的控制

影响积屑瘤的因素:工件材料、切削用量、刀具前角、切削液等

控制措施:通过热处理,提高零件材料的硬度,降低材料的加工硬化。

要避免在中温、中速加工塑性材料

增大前角可减小切削变形,降低切削温度,减小积屑瘤的高度 采用润滑性能优良的切削液可减少甚至消除积屑瘤

3、鳞刺的形成

低速加工塑性金属材料时在已加工表面常会出现一种鳞片状毛刺,成为鳞刺。  成因:低速切削形成挤裂或单元切屑时,刀、屑间摩擦发生周期性变化使切屑在前面上周期性停留代替刀具推挤切削层造成金属的积聚,使以加工表面产生拉应力而导裂,并使切削厚度向切削线以下而形成鳞刺

4、已加工表面的变形

切屑经过刀刃钝圆B点后,受到后刀面BC段的挤压和摩擦,经过BC段后,这部分金属开始弹性恢复,恢复高度为△h,在恢复过程中又与后刀面CD部分产生摩擦,这部分切削层在OB,BC,CD段的挤压和摩擦后,形成了已加工表面的加工质量。所以说第三变形区对工件加工表面质量产生很大影响。

备课时间:09-2-25

上课时间:09-2-26 教学目的:

1、掌握刀具材料的基本要求及常用刀具材料。

2、熟悉切削力、切削热和切削温度及其对刀具寿命的影响。

教学重点和难点:刀具材料的基本要求及常用刀具材料。 课时:2课时 授课内容:

1.4 刀具材料

述:刀具材料是指刀具上参与切削部分的材料。 1.4.1 刀具材料的基本要求 (1)高硬度

(2)高强度与强韧性

(3)较强的耐磨性和耐热性 (4)优良导热性

(5)良好的工艺性与经济性 1.4.2 常用刀具材料

刀具材料种类很多,常用的有:工具钢(包括碳素工具钢、)、硬质合金、陶瓷金刚石(天然和人造)、立方氮化硼、碳素工具钢和合金工具钢,因其耐热性很差,目前仅用于手工工具。

1、高速钢

 高速钢是一种含有钨、钼、钒等合金元素较多的工具钢 ,也称为锋钢或白钢.  特点:

1)强度高,抗弯强度为硬质合金的2~3倍;

2)韧性高,比硬质合金高几十倍;

3)硬度HRc63以上,且有较好的耐热性;

4)可加工性好,热处理变形较小。

应用:常用于制造各种复杂刀具(如钻头、丝锥、拉刀、成型刀具、齿轮刀具等)。

2、硬质合金

 硬质合金是用高硬度、高熔点的金属碳化物粉末和金属粘结剂(如Co、Ni、Mo等)经高压成型后,再在高温下烧结而成的粉末冶金制品。 

优点

硬质合金的硬度、耐磨性、耐热性都很高,允许的切削速度远高于高速钢,且能切削诸如淬火钢等硬材料。  不足(与高速钢相比):

其抗弯强度较低、脆性较大,抗振动和冲击性能也较差。

 硬质合金因其切削性能优良而被广泛用来制作各种刀具。在我国,绝大多数车刀、面铣刀和深孔钻都采用硬质合金制造。

3、陶瓷刀具材料

 陶瓷材料比硬质合金具有更高的硬度(HRA91~95)和耐热性,在1200℃的温度下仍能切削,耐磨性和化学惰性好,摩擦系数小,抗粘结和扩散磨损能力强,因而能以更高的速度切削,并可切削难加工的高硬度材料。 主要缺点是性脆、抗冲击韧性差,抗弯强度低。

4、立方氮化硼

它是一种人工合成的新型刀具材料。它是利用超高温高压技术制成的一种无机超硬材料。立

方氮化硼在高温、其硬度很高,可达8000~9000HV,仅次于金刚石,但热稳定性远高于金刚石,并且与元素亲和力小,它的最大的优点是在高温1200℃~1300℃时也不会与铁族金属起反应。因此既能胜任淬火钢、冷硬铸铁的粗车和精车,又能胜任高温合金、热喷涂材料、硬质合金及其他难加工材料的高速切削。超高速加工的首选刀具材料

5、金刚石

分为人造和天然两种,是目前已知最硬的,硬度约为HV10000,故其耐磨性好,不足之处是抗弯强度和韧性差,对铁的亲和作用大,故金刚石刀具不能加工黑色金属,在800℃时,金刚石中的碳与铁族金属发生扩散反应,刀具急剧磨损。金刚石价格昂贵,刃磨困难,应用较少。主要用作磨具及磨料,有时用于修整砂轮。

总结:材料的韧性则是高速钢最高,金刚石最低

材料的硬度、耐磨性,金刚石最高,递次降低到高速钢。

课时八

1.5 切削力、切削热和切削温度 1.5.1

切削力的来源

1、切削层金属、切屑和工件表面层金属的弹性

变形、塑性变形所产生的抗力;

2、刀具与切屑、工件表面间的摩擦阻力。

1.5.2 切削分力及其作用

1、主切削力Fc :切削合力在切削速度方向上的分力,垂直于基面,是计算机床动力、校核机床和夹具强度及刚度的重要依据

2、背向力Fp

切削合力在切削深度方向上的分力,与切深方向相反,它能使工件弯曲和引起震动,对加工质量影响较大。

3、进给力Ff

切削合力在进给方向上的分力; 与进给方向平行,但方向相反,是设计和校验进给机构强度的依据。

4、影响切削力的因素

工件材料: 被加工工件材料的强度、硬度越高,切削力增大。强度相近的材料,如其塑性(伸长率)较大,切削力增大。切削脆性材料时,其切削力一般低于塑性材料。

切削用量:切削深度ap或进给量f加大,均使切削力增大,但两者的影响程度不同,ap 的影响更大一些。 切削速度: 加工塑性金属时,在中速和高速下,切削力一般随着切削速度的增大而减小。 刀具几何参数

1.5.5

切削热和切削温度

1. 切削热的产生传出及影响 a.切削热的来源

切屑层的金属发生弹性变形、塑性变形而产生大量的热 切屑与刀具前刀面产生的摩擦 工件与刀具后刀面产生的摩擦 b.切削热的传导

传入切屑,约占总热量的50%~86%,对切削加工无不利影响

传入工件,约占总热量的40%~10%,会使工件膨胀或伸长,产生尺寸和形状误差,影响加工精度

传入刀具,约占总热量的9%~3%,使刀具温度升高,硬度下降,磨损加快,耐用度降

传入周围介质,约占总热量的1%,对切削加工无不利影响 2. 切削温度及其影响因素

切削温度:是指刀具表面上切屑和刀具接触处的平均温度。

其高低取决于切削时产生热量的多少和传导条件的好坏,切削用量、工件材料、刀具材料及角度等对切削温度均有影响 3. 降低切削温度的措施

(1) 选择合理的几何角度和切削用量 (2) 使用切削液 1.6 刀具的磨损和寿命

一.刀具的磨损形式

1、前刀面磨损(月牙洼磨损) 2.后万面磨损

3.前刀面和后刀面同时磨损

二、刀具磨损过程

初期磨损阶段、正常磨损阶段、急剧磨损阶段

三、刀具寿命 (1) 定义

刃磨或换刃后的刀具,自开始切削直到磨损量达到磨钝标准为止的切削时间,称为刀具寿命,符号用T,单位用min或s。

(2) 刀具寿命与切削用量的关系

切削用量对刀具寿命T 的影响程度与切削用量对切削温度θ的影响程度是一致的,切削速度对刀具寿命的影响最大,其次是进给量,背吃刀量的影响很小。

备课时间:09-3-1

上课时间:09-3-2 教学目的:

1、掌握切削液的作用及选用原则

2、掌握前角的选用方法和原则。

教学难点:刀具几何角度的确定。

教学重点:刀具的组成及几何角度的确定方法。 课时:2课时 授课内容:

1.7 工件材料的切削加工性和切削液

1.7.1切削加工性的概念和衡量指标

材料的切削加工性是指材料被切削加工的难易程度。材料加工的难易程度要由具体的加工要求及切削条件而定。通常精加工时以能较好的保证加工质量为工件材料切削加工性的主要指标;自动加工则以断屑的难易程度为材料切削加工性的主要指标 衡量材料切削加工性的指标 1.一定刀具寿命下的切削速度 vTvT越大,材料的切削加工性越好。 2.相对加工性 kr

为统一标准起见,取正火状态下的45钢作基准材料,刀具寿命为60 min,这时的切削速度为基准(写作 (v60) j ),而将其它材料的 (v 60)与其相比,这个比值Kr称为相对加工性:

vkr60(v60)j

材料具有良好的切削加工性。 kr1

3.已加工表面质量

凡较容易获得好的表面质量的材料,其切削加工性较好;反之则较差。精加工时,常以此为衡量指标。

4.切屑的控制或断屑的难易

凡切屑较容易控制或易于断屑的材料,其切削加工性较好;反之则较差。在自动机床或自动线上加工时,常以此为衡量指标。 5.切削力

在相同切削条件下,凡切削力较小的材料,其切削加工性较好;反之则较差。在粗加工中,当机床刚性或动力不足时,常以此为衡量指标。 (衡量材料切削加工性的指标5项内容,须提问)  影响材料切削加工性的因素 1.物理性能

材料的导热性愈好、一定刀具耐用度下的切削速度愈 高,材料的切削加工性愈好。 2.材料的力学性能

材料的强度、硬度愈高,切削力愈大,切削温度愈高,刀具磨损加剧,— 切削加工性愈差。

材料的塑性、韧性愈高,切削时切屑的变形加大,摩擦力提高,切削力愈大,切削温度愈高,刀具磨损加剧,— 切削加工性愈差。 1.7.2 改善材料切削加工性的途径 1.调整材料的化学成分

在钢中加入 S、Pb 等元素,可有效的改善材料的切削加工性。——“易切削钢”。 2.热处理

1.7.3

切削液 1.切削液的作用 (1)润滑作用 (2)冷却作用 (3)清洗作用 (4)防锈作用

2、切削液的种类 ①、切削油 ②、乳化液 ③、水溶液

3.切削液的选用原则 (1)粗加工

 粗加工时,切削用量大,产生的切削热量多,容易使刀具迅速磨损。此类加工一般

采用冷却作用为主的切削液,如离子型切削液或3%~5%乳化液。

 切削速度较低时,刀具以机械磨损为主,宜选用润滑性能为主的切削液;  速度较高时,刀具主要是热磨损,应选用冷却为主的切削液。

 硬质合金刀具耐热性好,热裂敏感,可以不用切削液。如采用切削液,必须连续、充分浇注,以免冷热不均产生热裂纹而损伤刀具。

(2)精加工

 精加工时,切削液的主要作用:提高工件表面加工质量和加工精度。

 加工一般钢件,在较低的速度(6.0m/min~30m/min)情况下,宜选用润滑性能好的极压切削油或10%~12%极压乳化液,以减小刀具与工件之间的摩擦和粘结,抑制积屑瘤。 注意:

 A、加工铜材料时,不宜采用含硫切削液,因为硫对铜有腐蚀作用。

 B、加工铝时,也不适于采用含硫与氯的切削液,因为这两种元素宜与铝形成强度高于铝的化合物,反而增大刀具与切屑间的摩擦。也不宜采用水溶液,因高温时水会使铝产生针孔。

1.8 刀具几何参数的合理选择

 刀具几何参数的合理选择:是指在保证加工质量的前提下,选择能提高切削效率,降低生产成本,获得最高刀具耐用度的刀具几何参数。

 刀具几何参数内容:

 刀具几何角度(如前角、后角、主偏角等)、 刀面形式(如平面前刀面、倒棱前刀面等)  切削刃形状(直线形、圆弧形) 1.前角和前刀面形状的选择  前角的功用:

(1)影响切削变形和切削力的大小 (2)影响加工表面质量 (3)影响刀具寿命

(4)影响切屑形态和断屑效果。 (1) 前角的选择:

 在选择刀具前角时首先应保证刀刃锋利,同时也要兼顾刀刃的强度与耐用度。

 刀具前角的合理选择,主要由刀具材料、工件材料、加工条件决定。

 ① 刀具材料

强度和韧性大的刀具材料可以选择大的前角,而脆性大的刀具甚至取负的前角。

 ② 工件材料

加工钢件等塑性材料时,切屑沿前刀面流出时和前刀面接触长度长,压力与摩擦较大,为减小变形和摩擦,一般采用选择大的前角。

加工脆性材料时,切屑为碎状,切屑与前刀面接触短,切削力主要集中在切削刃附近,受冲击时易产生崩刃,因此刀具前角相对塑性材料取得小些或取负值,以提高刀刃的强度。

 ③ 加工条件

粗加工时,一般取较小的前角;

精加工时,宜取较大的前角,以减小工件变形与表面粗糙度; 带有冲击性的断续切削比连续切削前角取得小。

总之,前角选择的原则是在满足刀具耐用度的前提下,尽量选取较大前角。

刀具的合理前角参考值见P34表1-7

2、前刀面形状、刃区形状及其参数的选择

 ①、前刀面形状

 A、正前角锋刃平面型

特点:刃口较锋利,但强度差,γo不能太大,不易折屑 。

主要用于高速钢刀具,精加工。 B、带倒棱的正前角平面型

 特点:切削刃强度及抗冲击能力强,同样条件下可以采用较大的前角,提高了刀具耐用度。

主要用于硬质合金刀具和陶瓷刀具,加工铸铁等脆性材料。

 C、负前角平面型

特点:切削刃强度较好,但刀刃较钝,切削变形大。

 主要用于硬脆刀具材料。加工高强度高硬度材料,如淬火钢。  图示类型负前角后部加有正前角,有利于切屑流出。  D、曲面型

 特点:有利于排屑、卷屑和断屑,而且前角较大,切削变形小,所受切削力也较小。  在钻头、铣刀、拉刀等刀具上都有曲面前面。

备课时间:09-3-4

上课时间:09-3-5 教学目的:

1、掌握后角、主偏角、刃倾角的选择原则和方法。

2、掌握切削用量的选择原则和方法。

教学重点、难点:切削用量的选择原则和方法。 课时:2课时 授课内容:

2.后角及形状的选择 (1)后角的功用 :

A、减小刀具后刀面与加工表面的摩擦;

B、当前角固定时,后角的增大与减小能增大和减小刀刃的锋利程度,改变刀刃的散热,从而影响刀具的耐用度。 (2)后角的选择

后角大小取决于:切削厚度、工件材料、工艺系统刚度。 切削厚度(进给量)越大,后角越小; 工件材料越软、塑性越大,后角越大; 工艺系统刚度较差时,适当减小后角

副后角的作用与后角类似,它用来减少副后面与已加工表面之间的摩擦,一般刀具将副后角制成与后角相同。 1.8.4、主、副偏角的功用及其选择

1、主、副偏角的功用

主偏角影响切削层的形状,切削刃的工作长度和单位切削刃上的负荷。减少κr,主切削刃单位长度上的负荷减少,刀具磨损小,耐用。

副偏角影响已加工表面的粗糙度和刀尖强度,减少κr´,减少表面的粗糙度的数值,还可提高刀具强度。过小,会使副切削刃与已加工面的摩擦增加,引起震动,降低表面质量。2.主、副偏角的选择

 主偏角主要根据加工条件和工艺系统刚性来选择

 副偏角主要考虑表面粗糙度、刀尖强度和散热面积来选择。 3.主偏角的选择

 A、主偏角κr的增大或减小对切削加工有利的一面(主偏角κr减小,能提高刀具耐用度。)

在背吃刀量ap与进给量f 不变时,主偏角κr减小将使切削厚度hD减小,切削宽度bD增加,参加切削的切削刃长度也相应增加,切削刃单位长度上的受力减小,散热条件也得到改善。

主偏角κr减小时,刀尖角增大,刀尖强度提高,刀尖散热体积增大。

 B、主偏角κr的增大或减小对切削加工不利的一面(主偏角的减小对刀具耐用度和加工精度产生不利影响。)

因为根据切削力分析可以得知,主偏角κr减小,将使背向力Fp增大,从而使切削时产生的挠度增大,降低加工精度。同时背向力的增大将引起振动。 主偏角κr 选择原则 :

 ①、工艺系统刚性较好时(工件长径比lw/dw

 硬质合金刀具车刀的主偏角多为60o~75o 。

 ③、根据工件加工要求选择。

当车阶梯轴时, κr =90o;同一把刀具加工外圆、端面和倒角时, κr =45o。

课时十二

4、副偏角的选择

 副偏角κrˊ的大小对刀具耐用度和加工表面粗糙度的影响:

 A、副偏角的减小,将可降低残留物面积的高度,提高理论表面粗糙度值,  B、副偏角减小刀尖强度增大,散热面积增大,提高刀具耐用度。

 C、副偏角太小会使刀具副后刀面与工件的摩擦,使刀具耐用度降低,另外引起加工中振动。

 ①、工艺系统刚性好时,加工高强度高硬度材料,一般κrˊ=5o~10o;加工外圆及端面,能中间切入,κrˊ=45o。

 ②、工艺系统刚度较差时,粗加工、强力切削时,κrˊ=10o~15o;车台阶轴、细长轴、薄壁件,κrˊ=5o~10o。  ③、切断切槽,κrˊ=1o~2o。

 副偏角的选择原则是:在不影响摩擦和振动的条件下,应选取较小的副偏角。 1.8.5

刃倾角的选择

(1)λs对切屑流出方向的影响

 当λs为负值时,切屑将流向已加工表面,并形成长螺卷屑,容易损害加工表面。

但切屑流向机床尾座,不会对操作者产生大的影响。粗车时采用负值的λs 。  当λs为正值,切屑将流向机床床头箱,影响操作者工作,并容易缠绕机床的转动部件,影响机床的正常运行精车时采用正值的λs 。 (2)刃倾角对刀尖的影响

 刃倾角λs的变化能影响刀尖的强度和抗冲击性能。

 当λs取负值时,刀尖在切削刃最低点,切削刃切入工件时,切入点在切削刃或前刀面,保护刀尖免受冲击,增强刀尖强度。

 一般大前角刀具通常选用负的刃倾角,既可以增强刀尖强度,又避免刀尖切入时产生的冲击。

(3)刃倾角对切削分力的影响

刃倾角负值越大,切深抗力越大,当工艺系统刚性较差时,容

易引起振动。  1.8.6.刀尖形状的选择

 刀尖是刀具强度和散热条件都很差的地方。切削过程中,刀尖切削温度较高,非常容易磨损,因此增强刀尖,可以提高刀具耐用度。刀尖对已加工表面粗糙度有很大影响。

 (1)直线过渡刃的优点:

主偏角κr和副偏角κrˊ的减小,都可以增强刀尖强度,但同时也增大了背向力Fp,使得工件变形增大并引起振动。但如在主、副切削刃之间磨出直线过渡刃 。则既可增大刀尖角,又不会使背向力Fp增加多少  (2 )圆弧状刀尖的圆弧半径取值

增大rε ,刀具的磨损和破损都可减小,不过,此时背向力Fp也会增大,容易引起振动。考虑到脆性大的刀具对振动敏感因素,一般硬质合金刀具和陶瓷刀具的刀尖圆弧半径rε值较小;

硬质合金车刀和陶瓷车刀,一般rε=0.2~2㎜, 高速钢刀具,rε =0.5~5 ㎜。 精加工rε选取比粗加工小。

 (3)

修光刃

精加工时,还可修磨出κrε=0o,宽度b=(1.2~1.5)f 与进给方向平行的修光刃,切除掉残留面积。

这种修光刃能在进给量较大时,还能获得较高的表面加工质量。 修光刃 常用于端铣刀

1.9 切削用量的选择

1) 切削用量对加工质量的影响

当切削速度增大时,切削力减小,可减小或避免积屑瘤,有利于提高加工质量 进给量增大使工件残留面积的高度显著增大,表面更粗糙。

切削深度增大,时切削力和工件变形增大,可能引起振动,使零件的加工精度和表面质量下降。

2) 切削用量对刀具耐用度的影响

在切削用量中,切削速度对刀具耐用度的影响最大,进给量次之,切削深度影响最小 3) 选择切削用量的原则

粗加工:首先选择大的切削深度,其次选择较大的进给量,最后确定合理的切削速度。 精加工:一般取较小的切削深度和进给量,尽可能选择较高的切削速度。  对切削用量三要素选择方法

 (1)背吃刀量的选择

 粗加工时(表面粗糙度Ra50~12.5μm) :在允许的条件下,尽量一次切除该工序的全部余量。如分两次走刀,则第一次背吃刀量尽量取大 ,第二次背吃刀量尽量取小些。

 半精加工时(表面粗糙度Ra6.3~3.2μm),背吃刀量一般为0.5~2㎜。)  精加工时(表面粗糙度Ra1.6~0.8μm),背吃刀量为0.1~0.4㎜。

 (2)进给量的选择

 粗加工时,进给量主要考虑工艺系统所能承受的最大进给量。

 精加工和半精加工时,最大进给量主要考虑加工精度和表面粗糙度。另外还要考虑工件材料,刀尖圆弧半径、切削速度等。

P39 表1-8 、1-9.  (3)切削速度的选择  切削速度的选取原则是:

 粗车时,应选较低的切削速度,精加工时选择较高的切削速度;

 加工材料强度硬度较高时,选较低的切削速度,反之取较高切削速度;  刀具材料的切削性能越好,切削速度越高。 可查表1-11得到

推荐第6篇:常见机械加工工艺

常见机械加工工艺

1.车削

车削主要是在车床上,利用刀具对旋转的工件进行切削加工。车床上还可用钻头、扩孔钻、铰刀、丝锥、板牙和滚花工具等进行相应的加工。车削的加工原理为:工件旋转(主运动),车刀在平面内作直线或曲线运动(进给运动),可用以加工内外圆柱面、端面、圆锥面、成型面和螺纹等。车削圆柱面时,车刀沿平行于工件旋转轴线的方向运动;车削端面或切断工件时,车刀沿垂直于工件旋转轴线的方向水平运动。若车刀的运动方向与工件的旋转轴线成一条斜角,那么可加工成圆锥面。

车削操作注意事项: (1) 工作前先润滑车床,检验手柄是否到位,开慢车试运转5分钟,确认一切正常方能操作;

(2) 卡盘夹头要上劳,扳手不能留在其上; (3) 工件和刀具要装夹牢固,刀杆不能伸出过长(镗孔除外),转动小刀架要停车,防止刀具碰撞卡盘,工件或划破手;

(4) 工件运转时,人不能正对着工件站立,身不靠车床,脚不踏油盘; (5) 高速切削时,为确保安全,应使用断削器和挡互屏; (6) 禁止高速反刹车,退车和停车要平稳; (7) 清除铁屑时,应使用刷子或专用钩; (8) 用锉刀打光工件,必须右手在前,左手在后;用纱布打光工件时,要用手夹等工具,以防绞伤;

(9) 一切再用的工、量、刃具均需放到附近安全位置,做到整齐有序; (10) 在车头取下或测量工件时,要等车床停稳再操作; (11) 车床工作时,禁止打开或卸下防护装置;

(12) 临近下班,应清扫和擦拭车床,并将尾座和溜板箱退到车床床身最右端。

车削加工的主要参数是背吃刀量和进给量。背吃刀量指垂直于进给速度方向的切削层最大尺寸,一般指工件上以加工表面和待加工表面间的垂直距离。进给量是指工件(或刀具)每旋转一周或往复一次,或刀具每转过一齿时,工件或工具在进给运动方向上的相对位移。在粗车时,尽量使用大的背吃刀量和进给量以提高生产率,而在精车时,则选用较小的背吃刀量和进给量,以保证工件所要求的加工精度和表面质量。 2.铣削

铣削和车削运动方式相反,它是利用旋转的多人刀具作旋转运动来切削工件,是高效率的加工方法。铣削时,刀具旋转(主运动),工件移动(进给运动),工件也可固定,但此时旋转的刀具还必须移动,即刀具同时完成主运动和进给运动。铣削一般在铣床或镗床上进行,适用于加工平面、沟槽、各种成型面如花键、齿轮、螺纹和模具的特殊型面等。

铣削操作注意事项:

(1) 铣削不规则的工件及使用虎钳、分度头或专用夹具夹持工件时,不规则工件的重心及虎钳、分度头、专用夹具等尽可能放在工作台中间部位,避免工作台受力不均,产生变形;

(2) 在快速或自动进给铣削时,不准把工作台挤到两极端,以免挤坏丝杆; (3) 不准用机动对刀,对刀应手动进行;

(4) 工作台换向时,必须将换向手柄停在中间位置,然后再换向,不能直接换向;

(5) 铣削键槽轴类,或切割薄的工件时,严防铣坏分度头及工作台面; (6) 铣削平面时,必须使用有四个刀头以上的刀盘,选择合适的切削用量,防止机床在铣削中产生振动。

铣削的特征是:铣刀各刀齿周期性地间断切削,每个刀齿在切削过程中厚度是变化的,每齿进给量表示铣刀每转过一个刀齿的时间内工件的相对位移量。 3.钻削

钻削是加工孔的基本方法,通常在钻床或车床上进行,也可在镗床或铣床上进行。钻削时,钻削刀具与工件作相对转动(主运动)并作轴向进给运动。由于钻削的精度较低,故钻削主要用于粗加工或精加工之前的预加工。

4.磨削

磨削是以较高的线速度旋转的磨料、磨具(如砂轮)对工件的表面进行加工。磨削加工在机械上属于精加工,加工量少,精度高。磨削用于加工工件的内外圆柱面、圆锥面、平面、螺纹、花键、齿轮等特殊、复杂的成型表面。由于磨粒硬度高,磨具具有自锐性,因此磨削可用于加工各种材料,包括淬硬钢、各种合金钢、硬质合金、玻璃、陶瓷和大理石等高硬度金属和非金属材料。磨削分为外圆磨削、内圆磨削、平面磨削和无心磨削。外圆磨削主要在外圆磨床上进行,用以磨削轴类工件的外圆柱,磨削时,工件低速旋转,若工件同时作纵向往复移动并在纵向移动的每次单行程或双行程后砂轮相对工件作横向进给,则称为纵向磨削法;若砂轮宽度大于被磨削的表面长度,则工件不需作纵向往复移动,称为切入磨削法。切入磨削法的效率高于纵向磨削法。内圆磨削主要在内圆磨床、万能外圆磨床或坐标磨床上进行,主要磨削工件的圆柱孔、圆锥孔和孔端面,一般采用纵向磨削法,而磨削成型内表面时可采用切入磨削法。在坐标磨床上磨削内孔时,工件固定在工作台上,砂轮除作高速旋转外,还绕所磨孔的中心线作行星运动。平面磨削主要是在平面磨床上磨削平面、沟槽等,其分为两种:用砂轮外圆表面磨削的称为周边磨削,用砂轮端面磨削的称为端面磨削。无心磨削是在无心磨床上进行,用以磨削工件外圆,磨削时,工件不用顶尖定心和支承,而是放在砂轮与导轮之间,由其下方的托板支承,并由导轮带动旋转。当导轮轴线与砂轮轴线调整成斜交1~6°时,工件能边旋转边自动沿轴向作进给运动,称为贯穿磨削,其只适用于磨削外圆柱面。

磨削速度高,温度也高,磨削加工可获得较高的精度和很小的表面粗糙度,其不但可以加工软材料,如未淬火钢、铸铁和有色金属,还可加工淬火钢及其他道具不能加工的硬质材料,如瓷件、硬质合金等。磨削时的切削深度很小,在一次行程中所能切除的金属层很薄,当磨削加工时,从砂轮上飞出大量细的磨削,从工件上飞出大量金属削,易对人造成伤害。

磨削加工注意事项: (1) (2) (3) 开车前对机床全面检查,包括对操作机构、电气设备和磁力吸盘等。检查后进行润滑,而后试车,确保正常方可使用;

装工件要卡正、卡紧,开始时,应用手调方式,使砂轮慢慢靠近工件,开始进给量要小,不能用力过猛,防止砂轮碰撞。

更换砂轮时,必先进行外观检查,看是否有外伤,再用木锤或木棒敲击,要求声音清脆无裂纹。安装砂轮必须按规定的方法或要求进行,静平衡调试后安装,试车,一切正常后才能使用; 操作人员工作时,应戴好防护眼镜,修整砂轮要平衡进行,防止撞击,测量工件,擦拭机床都要在停机后进行,用磁力吸盘时,应将盘面、工件擦净、靠紧、吸牢,必要时可加挡铁,防止工件移位或飞出;

操作人员停止工作后,应立即关车,禁止砂轮在无人使用、无人管理的状态下运转;

作业完毕后,应及时清除各部位磨屑,将机件各处(特别是滑动部位)擦拭干净后上油,并在必要部位上防锈。 (4)

(5) (6) 5.刨削

刨削是刨刀与工件作相对直线往复运动的切削加工,是加工平面的主要方法之一,适用于单小批量生产平面、垂直面和斜面。刨削可在牛头刨床或龙门刨床上进行,其主运动是变速往复直线运动,因为在变速时有惯性。限制了切削速度的提高,并在回程时不切削,故而效率低,不适合大批量生产。刨削也可广泛应用于加工直槽、燕尾槽、T形槽、齿条、齿轮、花键、和母线为直线的成型面等。其特点是通用性好、效率低、精度不高。

6.镗削

镗削是一种用刀具扩大孔或其他圆形轮廓的内径车削工艺,其镗刀旋转作主运动,镗刀或工件作进给运动。镗削一般在镗床、加工中心或组合机床上进行,主要用于加工箱体支架和机座等工件上的圆柱孔、螺纹孔孔内沟槽或端面,当采用特殊附件时,也可加工内外球面、锥孔等。镗削时,工件安装在机床工作台或机床夹具上,镗刀装夹在镗杆上(也可与镗杆制成整体),由主轴驱动旋转。镗削的应用范围一般从半粗加工到精加工,其镗刀类型分为单刃镗刀、双刃镗刀和多刃镗刀,一般采用的是单刃镗刀。

7.拉削

拉削是使用拉床(拉刀)加工工件内外表面的一种切削工艺,是拉刀在拉力作用下作轴向运动,加工工件的内、外表面。拉削与其他切削作业不同,主要考虑的是刀具的磨损及刀具的使用寿命,在拉削作用下,数个齿同时啮合,而且切削宽度经常很大,移除切削比较困难,故常需要低粘度油。拉削分为内拉削和外拉削。内拉削用来加工各种形状的通孔或孔内通槽,如圆孔、方孔、多边形孔、花键孔、键槽孔、内齿轮等,拉削前要有已加工孔,让拉刀能够插入,一般情况下,拉削的孔直径范围为8~125毫米,深度不能超过孔径范围的5倍。外拉削用以加工非封闭性表面,如平面、成型面、沟槽、榫槽、叶片榫头和外齿轮等,特别适合于在大量生产中加工比较大的平面和复合型面,如汽缸体、轴承座、连杆等。拉削具有效率高、精度高、范围广、结构操作简便等优点,同时也有期刀具结构复杂,成本高的缺点。拉削时,从工件上切除加工余量的顺序和方式有成形式、渐成式、轮切式和综合轮切式等。成形式加工精度高,表面粗糙度较小,但效率较低,拉刀长度较长,主要用于加工中小尺寸的圆孔和精度要求高的成形面。渐成式适用于粗拉削复杂的加工表面,如方孔、多边形孔和花键孔等,这种方式采用的拉刀制造较易,但加工表面质量较差。轮切式切削效率高,可减小拉刀长度,但加工表面质量差,主要用于加工尺寸较大、加工余量较多、精度要求较低的圆孔。综合轮切式是用轮切法进行粗拉削,用成形法进行精拉削,兼有两者的优点,广泛用于圆孔拉削。

拉削注意事项: (1)

(2) 拉削普通结构钢和铸铁时,一般粗拉速度为 3 ~7米/分,精拉速度小于3米/分。对于高温合金或钛合金等难加工金属材料, 只有采用硬质合金或新型高速钢拉刀,在刚度好的高速拉床上,用16~30米/分或更高的速度拉削, 才能得到比较满意的结果。 拉削一般采用润滑性能较好的切削液,例如切削油和极压乳化液等。在高速拉削时,切削温度高,常选用冷却性能好的化学切削液和乳化液。如果采用内冷却拉刀将切削液高压喷注到拉刀的每个容屑槽中,则对提高表面质量、降低刀具磨损和提高生产效率都具有较好的效果。

8.锯切

锯切是用边缘具有许多锯齿的刀具(锯条、圆锯片、锯带)或薄片砂轮等将工件或材料切出狭槽或进行分割的切削加工。锯切可按所用刀具形式分为弓锯切、圆锯切、带锯切和砂轮锯切等。弓锯切是将锯条张紧在弓形的锯架上,并作直线往复运动,对工件进行切割,一般在弓锯床上利用动力锯切,也可用手工锯切。由于弓锯切在回程时不进行切削,故效率较低。圆锯切是在圆锯床上由主轴带动圆锯片旋转对工件进行连续切割,效率较高。带锯切是在带锯床上利用两个轮子把长而薄的环形锯带张紧,并驱动锯带作连续运动对工件进行切割。宽带锯切的效率高,切口窄,有取代弓锯切的趋势;窄带锯切适于切割扁平工件的外部曲线轮廓或成形的通孔。砂轮锯切是用高速旋转的薄片砂轮切割工件,适于切割难加工金属材料。各种锯切方法的精度都不高,除窄带锯切外,一般用于在备料车间切断各种棒料、管料等型材。锯切设备一般采用硬质合金圆锯片作为锯切刀具,大大提高了锯片的耐磨性,设备采用气压传动实现对型材的夹紧和工进,采用电动机与锯片同轴或带增速的高速切割,使得切割面光滑,切削质量高。

9.铸造 9.1 压力铸造

压力铸造(简称压铸)是熔融金属在高压下高速充满型腔,并在压力下凝固成型而获得铸件的铸造方法。其显著特点是高压和高速、精度高、产品质量好(强度、硬度、表面光洁度好)、效率高、经济效果优良(大批量生产)。在压铸生产中,压铸机、压铸合金、压铸模具是其三大要素,压铸工艺是将三大要素有权地组合并加以运用的过程。压铸也存在某些缺点,主要在于:液态金属充填型腔速度高,流态不稳定,铸件易产生气孔,不能进行热处理;对内凹复杂的铸件加工较困难,高熔点合金(如铜,黑色金属),压铸型寿命较低;不宜小批量生产,其主要原因是压铸型制造成本高,压铸机生产效率高,小批量生产不经济。

压铸注意事项:

(1) 压铸机的选择。在组织多品种,小批量生产时,一般要选用液压系统简单,适应性强,能快速进行调整的压铸机,在组织少品种大量生产时,要选用配备各种机械化和自动化控制机构的高效率压铸机;对单一品种大量生产的铸件可选用专用压铸机。铸件外形寸尺,重量、壁厚等参数对选用压铸机有重要影响。铸件重量(包括浇注系统和溢流槽)不应超过压铸机压定的额定容量,但也不能过小,以免造成压铸机功串的浪费。一般压铸机的额定容量可查说明书。压铸机都有一定的最大和最小型距离,所以压型厚度和铸件高度要有一定限度,如果压铸型厚度或铸件高度太大就可能取不出铸件。

(2) 压力和速度的选择。压射比压的选择,应根据不同合金和铸件结构特性确定。对充填速度的选择,一般对于厚壁或内部质量要求较高的铸件,应选择较低的充填速度和高的增压压力;对于薄壁或表面质量要求高的铸件以及复杂的铸件,应选择较高的比压和高的充填速度。

(3) 浇注温度的选择。浇注温度过高,收缩大,使铸件容易产生裂纹、晶粒粒大、还能造成粘型;浇注温度过低,易产生冷隔、表面花纹和浇不足等缺陷。因此浇注温度应与压力、压铸型温度及充填速度同时考虑。

(4) 压铸型的温度。铸压型在使用前要预热到一定温度,一般多用煤气、喷灯、电器或感应加热。在连续生产中,压铸型温度往往升高,尤其是压铸高熔点合金,升高很快。温度过高除使液态金属产生粘型外,铸件冷却缓慢,使晶粒粗大。因此在压铸型温度过高时,应采用冷却措施。通常用压缩空气、水或化学介质进行冷却。

(5) 充填时间。自液态金属开始进入型腔起到充满型腔止,所需的时间称为充填时间。充填时间长短取决于铸件的体积的大小和复杂程度。对大而简单的铸件,充填时间要相对长 些,对复杂和薄壁铸件充填时间要短些。充填时间与内浇口的截面积大小或内浇口的宽度和厚度有密切关系,必须正确确定。

(6) 持压和开型时间。从液态金属充填型腔到内浇口完全凝固时,继续在压射冲头作用下的持续时间,称为持压时间。持压时间的长短取决于铸件的材质和壁厚。持压后应开型取出铸件。从压射终了到压铸打开的时间,称为开型时间,开型时间应控制准确。开型时间过短,由于合金强度尚低,可能在铸件顶出和自压铸型落下 时引起变形;但开型时间太长,则铸件温度过低,收缩大,对抽芯和顶出铸件的阻力亦大。一般开型时间按铸件壁厚1毫米需3秒钟计算,然后经试任调整。

(7) 压铸用涂料。压铸过程中,为了避免铸件与压铸型焊合,减少铸件顶出的摩擦阻力和避免压铸型过分受热而采用涂料。对涂料的要求:在高温时,具有良好的润滑性;挥发点低,在100~150℃时,稀释剂能很快挥发;对压铸型及压铸件没有腐蚀作用;性能稳定在空气中稀释剂不应挥发过度而变稠;在高温时不会析出有害气体;不会在压铸型腔表面产生积垢。

(8) 铸件清理。切除浇口和飞边,设备主要是冲床,液压机和摩擦压力机,在大量生产件下,可根据铸件结构和形状设计专用模具,在冲床上一次完成清理任务。表面清理多采用普通多角滚筒和震动埋入式清理装置。对批量不大的简单小件,可用多角清理滚筒,对表面要求高的装饰品,可用布制或皮革的抛光轮抛光。对大量生产的铸件可采用螺壳式震动清理机。清理后的铸件按照使用要求,还可进行表面处理和浸渍,以增加光泽,防止腐蚀,提高气密性。 9.2 重力铸造

重力铸造是指金属液在地球重力作用下注入铸型的工艺,也称重力浇铸。广义的重力铸造包括砂型浇铸、金属型浇铸、熔模铸造、消失模铸造,泥模铸造等;窄义的重力铸造主要指金属型浇铸。

推荐第7篇:机械加工工艺规程

机械加工工艺规程

10.1 工艺过程

10.1.1 生产过程与工艺过程 (1) 生产过程

生产过程是指把原材料(半成品)转变为成品的全过程.机械产品的生产过程,一般包括: ①生产与技术的准备,如工艺设计和专用工艺装备的设计和制造,生产计划的编制,生产资料的准备;②毛坯的制造,如铸造,锻造,冲压等;③零件的加工,如切削加工,热处理,表面处理等;④产品的装配,如总装,部装,调试检验和油漆等;⑤生产的服务,如原材料,外购件和工具的供应,运输,保管等.机械产品的生产过程一般比较复杂,目前很多产品往往不是在一个工厂内单独生产,而是由许多专业工厂共同完成的.例如:飞机制造工厂就需要用到许多其他工厂的产品(如发动机,电器设备,仪表等),相互协作共同完成一架飞机的生产过程.因此,生产过程即可以指整台机器的制造过程,也可以是某一零部件的制造过程.(2) 工艺过程

工艺过程是指在生产过程中改变生产对象的形状,尺寸,相对位置和性质等,使其成为成品或半成品的过程.如毛坯的制造,机械加工,热处理,装配等均为工艺过程.在工艺过程中,若用机械加工的方法直接改变生产对象的形状,尺寸和表面质量,使之成为合格零件的工艺过程,称为机械加工工艺过程.同样,将加工好的零件装配成机器使之达到所要求的装配精度并获得预定技术性能的工艺过程,称为装配工艺过程.机械加工工艺过程和装配工艺过程是机械制造工艺学研究的两项主要内容.10.1.2 机械加工工艺过程的组成

机械加工工艺过程是由一个或若干个顺序排列的工序组成的,而工序又可分为若干个安装,工位,工步和走刀,毛坯就是依次通过这些工序的加工而变成为成品的.(1) 工序

工序是指一个或一组工人,在一个工作地点对一个或同时对几个工件所连续完成的那一部分工艺过程.区分工序的主要依据,是工作地点(或设备)是否变动和完成的那部分工艺内容是否连续.如图 4.1所示的零件,孔1需要进行钻孔和铰孔,如果一批工件中,每个工件都是在一台机床上依次地先钻孔,而后铰孔,则钻孔和铰孔就构成一个工序.如果将整批工件都是先进行钻孔,然后整批工件再进行铰孔,这样钻孔和铰孔就分成两个工序了.工序不仅是组成工艺过程的基本单元,也是制订工时定额,配备工人,安排作业和进行质量检验的依据.通常把仅列出主要工序名称的简略工艺过程称为工艺路线.(2) 安装与工位

工件在加工前,在机床或夹具上先占据一正确位置 (定位 ),然后再夹紧的过程称为装夹.工件(或装配单元)经一次装夹后所完成的那一部分工艺内容称为安装.在一道工序中可以有一个或多个安装.工件加工中应尽量减少装夹次数,因为多一次装夹就多一次装夹误差,而且增加了辅助时间 .因此生产中常用各种回转工作台,回转夹具或移动夹具等,以便在工件一次装夹后,可使其处于不同的位置加工.为完成—定的工序内容,一次装夹工件后,工件 (或装配单元)与夹具或设备的可动部分一起相对刀具或设备固定部分所占据的每一个位置,称为工位.图4.2所示为一种利用回转工作台在—次装夹后顺序完成装卸工件,钻孔,扩孔和铰孔四个工位加工的实例.(3) 工步与走刀

1)工步 工步是指被加工表面(或装配时的连接表面 )和切削(或装配)工具不变的情况下所连续完成的那一部分工序.一个工序可以包括几个工步,也可以只有一个工步.一般来说,构成工步的任一要素 (加工表面,刀具及加工连续性)改变后,即成为一个新工步.但下面指出的情况应视为一个工步.①对于那些一次装夹中连续进行的若干相同的工步应视为一个工步.如图 4.1所示,两孔1的加工,可以作为一个工步.② 为了提高生产率,有时用几把刀具同时加工一个或几个表面,此时也应视为一个工步.称为复合工步.2)走刀 在一个工步内,若被加工表面切去的金属层很厚,需分几次切削,则每进行一次切削就是一次走刀.一个工步可以包括一次走刀或几次走刀.10.1.3 机械加工生产类型和特点 (1) 生产纲领

企业在计划期内生产的产品的数量和进度计划称为生产纲领.零件的年生产纲领.可按下式计算 N=Qn(1+a%+b%)

式中 N——零件的年生产纲领,件/年; Q——产品的年生产纲领,台/年; n——每台产品中该零件的数量,件/台; a%--备品的百分率; b%--废品的百分率.生产纲领的大小对生产组织形式和零件加工过程起着重要的作用,它决定了各工序所需专业化和自动化的程度,决定了所应选用的工艺方法和工艺装备.(2) 生产类型和工艺特点

企业 (或车间,工段,班组,工作地)生产专业化程度的分类称为生产类型.生产类型一般可分为:单件生产,成批生产,大量生产三种.1)单件生产 单件生产的基本特点是:生产的产品种类繁多,每种产品的产量很少,而且很少重复生产.例如,重型机械产品制造和新产品试制等都属于单间生产.2)成批生产 成批生产的基本特点是:分批的生产相同的产品,生产呈周期性重复.如机床制造,电机制造等属于成批生产,成批生产又可按其批量大小分为小批量生产,中批量生产,大批量生产三种类型.其中,小批量生产和大批生产的工艺特点分别与单件生产和大量生产的工艺特点类似;中批量生产的工艺特点.介于小批生产和大批生产之间.3)大量生产 大量生产的基本特点是:产量大,品种少,大多数工作长期重复的进行某个零件的某一道工序的加工.例如,汽车,拖拉机,轴承等的制造都属于大量生产.生产类型的划分除了与生产纲领有关外,还应考虑产品的大小及复杂程度,生产类型不同,产品制造的工艺方法,所用的设备和工艺装备以及生产的组织形式等均不同.大批大量生产应尽可能采用高效率的设备和工艺方法,以提高生产率;单件小批生产应采用通用设备和工艺装备,也可采用先进的数控机床,以降低各类生产类型的生产成本.10.2 机械加工工艺规程 10.2.1 概述

机械加工工艺规程是规定零件机械加工工艺过程和操作方法等的工艺文件之一,它是在具体的生产条件下,把较为合理的工艺过程和操作方法,按照规定的形式书写成工艺文件,经审批后用来指导生产.机械加工工艺规程一般包括以下内容:工件加工的工艺路线,各工序的具体内容及所用的设备和工艺装备,工件的检验项目及检验方法,切削用量,时间定额等.10.2.1.1 机械加工艺规程的作用 (1)是指导生产的重要技术文件

工艺规程是依据工艺学原理和工艺试验,经过生产验证而确定的,是科学技术和生产经验的结晶.所以,它是获得合格产品的技术保证,是指导企业生产活动的重要文件.正因为这样,在生产中必须遵守工艺规程,否则常常会引起产品质量的严重下降,生产率显著降低,甚至造成废品.但是,工艺规程也不是固定不变的,工艺人员应总结工人的革新创造,可以根据生产实际情况,及时地汲取国内外的先进工艺技术,对现行工艺不断地进行改进和完善,但必须要有严格的审批手续.(2)是生产组织和生产准备工作的依据

生产计划的制订,产品投产前原材料和毛坯的供应,工艺装备的设计,制造与采购,机床负荷的调整,作业计划的编排,劳动力的组织,工时定额的制订以及成本的核算等,都是以工艺规程作为基本依据的.(3)是新建和扩建工厂(车间)的技术依据

在新建和扩建工厂(车间)时,生产所需要的机床和其它设备的种类,数量和规格,车间的面积,机床的布置,生产工人的工种,技术等级及数量,辅助部门的安排等都是以工艺规程为基础,根据生产类型来确定.除此以外,先进的工艺规程也起着推广和交流先进经验的作用,典型工艺规程可指导同类产品的生产.10.2.1.2 工艺规程制订的原则

工艺规程制订的原则是优质,高产和低成本,即在保证产品质量的前提下,争取最好的经济效益.在具体制定时,还应注意下列问题: 1)技术上的先进性 在制订工艺规程时,要了解国内外本行业工艺技术的发展,通过必要的工艺试验,尽可能采用先进适用的工艺和工艺装备.2)经济上的合理性 在一定的生产条件下,可能会出现几种能够保证零件技术要求的工艺方案.此时应通过成本核算或相互对比,选择经济上最合理的方案,使产品生产成本最低.3)良好的劳动条件及避免环境污染 在制订工艺规程时,要注意保证工人操作时有良好而安全的劳动条件.因此,在工艺方案上要尽量采取机械化或自动化措施,以减轻工人繁重的体力劳动.同时,要符合国家环境保护法的有关规定,避免环境污染.产品质量,生产率和经济性这三个方面有时相互矛盾,因此,合理的工艺规程应用该处理好这些矛盾,体现这三者的统一.10.2.1.3 制订工艺规程的原始资料 1) 产品全套装配图和零件图.2) 产品验收的质量标准.3) 产品的生产纲领(年产量).4) 毛坯资料 毛坯资料包括各种毛坯制造方法的技术经济特征;各种型材的品种和规格,毛坯图等;在无毛坯图的情况下,需实际了解毛坯的形状,尺寸及机械性能等.5) 本厂的生产条件 为了使制订的工艺规程切实可行,一定要考虑本厂的生产条件.如了解毛坯的生产能力及技术水平;加工设备和工艺装备的规格及性能;工人技术水平以及专用设备与工艺装备的制造能力等.6) 国内外先进工艺及生产技术发展情况 工艺规程的制订,要经常研究国内外有关工艺技术资料,积极引进适用的先进工艺技术,不断提高工艺水平,以获得最大的经济效益.7) 有关的工艺手册及图册.10.2.1.4 制订工艺规程的步骤

1) 计算年生产纲领,确定生产类型.2) 分析零件图及产品装配图,对零件进行工艺分析.3) 选择毛坯.4) 拟订工艺路线.5) 确定各工序的加工余量,计算工序尺寸及公差.6) 确定各工序所用的设备及刀具,夹具,量具和辅助工具.7) 确定切削用量及工时定额.8) 确定各主要工序的技术要求及检验方法.9) 填写工艺文件.在制订工艺规程的过程中,往往要对前面已初步确定的内容进行调整,以提高经济效益.在执行工艺规程过程中,可能会出现前所未料的情况,如生产条件的变化,新技术,新工艺的引进,新材料,先进设备的应用等,都要求及时对工艺规程进行修订和完善.10.2.1.5 工艺文件的格式

将工艺规程的内容,填入一定格式的卡片,即成为生产准备和施工依据的工艺文件.常用的工艺文件格式有下列几种: (1)综合工艺过程卡片

这种卡片以工序为单位,简要地列出了整个零件加工所经过的工艺路线(包括毛坯制造,机械加工和热处理等),它是制订其它工艺文件的基础,也是生产技术准备,编排作业计划和组织生产的依据.在这种卡片中,由于各工序的说明不够具体,故一般不能直接指导工人操作,而多作生产管理方面使用.但是,在单件小批生产中,由于通常不编制其它较详细的工艺文件,而是以这种卡片指导生产.机械加工工艺卡片是以工序为单位,详细说明整个工艺过程的工艺文件.它是用来指导工人生产和帮助车间管理人员和技术人员掌握整个零件加工过程的一种主要技术文件,广泛用于成批生产的零件和小批生产中的重要零件.(3)机械加工工序卡片

机械加工工序卡片是根据工艺卡片为毎一道工序制订的.它更详细地说明整个零件各个工序的加工要求,是用来具体指导工人操作的工艺文件.在这种卡片上,要画出工序简图,注明该工序每一工步的内容,工艺参数,操作要求以及所用的设备和工艺装备.工序简图就是按一定比例用较小的投影绘出工序图,可略去图中的次要结构和线条,主视图方向尽量与零件在机床上的安装方向相一致,本工序的加工表面用粗实线或红色粗实线表示,零件的结构,尺寸要与本工序加工后的情况相符合,并标注出本工序加工尺寸及上下偏差,加工表面粗糙度和工件的定位及夹紧情况.用于大批量生产的零件.10.2.2 零件的工艺分析

在制订零件的机械加工工艺规程时,首先要对照产品装配图分析零件图,熟悉该产品的用途,性能及工作条件,明确零件在产品中的位置,作用及相关零件的位置关系;了解并研究各项技术条件制定的依据,找出其主要技术要求和技术关键,以便在拟定工艺规程时采用适当的措施加以保证.然后着重对零件进行结构分析和技术要求的分析.10.2.2.1 零件结构分析

零件的结构分析主要包括以下三方面: (1)零件表面的组成和基本类型

尽管组成零件的结构多种多样,但从形体上加以分析,都是由一些基本表面和特形表面组成的.基本表面有内外圆柱表面,圆锥表面和平面等;特形表面主要有螺旋面,渐开线齿形表面,圆弧面(如球面)等.在零件结构分析时,根据机械零件不同表面的组合形成零件结构上的特点,就可选择与其相适应的加工方法和加工路线,例如外圆表面通常由车削或磨削加工;内孔表面则通过钻,扩,铰,镗和磨削等加工方法获得.机械零件不同表面的组合形成零件结构上的特点.在机械制造中,通常按零件结构和工艺过程的相似性,将各类零件大致分为轴类零件,套类零件,箱体类零件,齿轮类零件和叉架类零件等.(2)主要表面与次要表面区分

根据零件各加工表面要求的不同,可以将零件的加工表面划分为主要加工表面和次要加工表面;这样,就能在工艺路线拟定时,做到主次分开以保证主要表面的加工精度.(3)零件的结构工艺性

所谓零件的结构工艺性是指零件在满足使用要求的前提下,制造该零件的可行性和经济性.功能相同的零件,其结构工艺性可以有很大差异.所谓结构工艺性好,是指在现有工艺条件下,既能方便制造又有较低的制造成本.10.2.2.2 零件的技术要求分析

零件图样上的技术要求,既要满足设计要求,又要便于加工,而且齐全和合理.其技术要求包括下列几个方面: 1)加工表面的尺寸精度,形状精度和表面质量; 2)各加工表面之间的相互位置精度; 3)工件的热处理和其它要求,如动平衡,镀铬处理,去磁等.零件的尺寸精度,形状精度,位置精度和表面粗糙度的要求,对确定机械加工工艺方案和生产成本影响很大.因此,必须认真审查,以避免过高的要求使加工工艺复杂化和增加不必要的费用.在认真分析了零件的技术要求后,结合零件的结构特点,对零件的加工工艺过程便有一个初步的轮廓.加工表面的尺寸精度,表面粗糙度和有无热处理要求,决定了该表面的最终加工方法,进而得出中间工序和粗加工工序所采用的加工方法.如,轴类零件上 IT7 级精度,表面粗糙度 R a 1.6 μ m 的轴颈表面,若不淬火,可用粗车,半精车,精车最终完成;若淬火,则最终加工方法选磨削,磨削前可采用粗车,半精车(或精车)等加工方法加工.表面间的相互位置精度,基本上决定了各表面的加工顺序.10.2.3 毛坯的选择

毛坯的确定,不仅影响毛坯制造的经济性,而且影响机械加工的经济性.所以在确定毛坯时,既要考虑热加工方面的因素,也要兼顾冷加工方面的要求,以便从确定毛坯这一环节中,降低零件的制造成本.10.2.3.1 机械加工中常用毛坯的种类

毛坯的种类很多,同一种毛坯又有多种制造方法,机械制造中常用的毛坯有以下几种: (1)铸件

形状复杂的零件毛坯,宜采用铸造方法制造.目前铸件大多用砂型铸造,它又分为木模手工造型和金属模机器造型.木模手工造型铸件精度低,加工表面余量大,生产率低,适用于单件小批生产或大型零件的铸造.金属模机器造型生产率高,铸件精度高,但设备费用高,铸件的重量也受到限制,适用于大批量生产的中小铸件.其次,少量质量要求较高的小型铸件可采用特种铸造(如压力铸造,离心制造和熔模铸造等).(2)锻件

机械强度要求高的钢制件,一般要用锻件毛坯.锻件有自由锻造锻件和模锻件两种.自由锻造锻件可用手工锻打(小型毛坯) , 机械锤锻(中型毛坯)或压力机压锻(大型毛坯)等方法获得.这种锻件的精度低,生产率不高,加工余量较大,而且零件的结构必须简单;适用于单件和小批生产,以及制造大型锻件.模锻件的精度和表面质量都比自由锻件好,而且锻件的形状也可较为复杂,因而能减少机械加工余量.模锻的生产率比自由锻高得多,但需要特殊的设备和锻模,故适用于批量较大的中小型锻件.(3)型材

型材按截面形状可分为:圆钢,方钢,六角钢,扁钢,角钢,槽钢及其它特殊截面的型材.型材有热轧和冷拉两类.热轧的型材精度低,但价格便宜,用于一般零件的毛坯;冷拉的型材尺寸较小,精度高,易于实现自动送料,但价格较高,多用于批量较大的生产,适用于自动机床加工.(4)焊接件

焊接件是用焊接方法而获得的结合件,焊接件的优点是制造简单,周期短,节省材料,缺点是抗振性差,变形大,需经时效处理后才能进行机械加工.除此之外,还有冲压件,冷挤压件,粉末冶金等其它毛坯.10.2.3.2 毛坯种类选择中应注意的问题 (1)零件材料及其力学性能

零件的材料大致确定了毛坯的种类.例如材料为铸铁和青铜的零件应选择铸件毛坯;钢质零件形状不复杂,力学性能要求不太高时可选型材;重要的钢质零件,为保证其力学性能,应选择锻件毛坯.(2)零件的结构形状与外形尺寸

形状复杂的毛坯,一般用铸造方法制造.薄壁零件不宜用砂型铸造;中小型零件可考虑用先进的铸造方法;大型零件可用砂型铸造.一般用途的阶梯轴,如各阶梯直径相差不大,可用圆棒料;如各阶梯直径相差较大,为减少材料消耗和机械加工的劳动量,则宜选择锻件毛坯.尺寸大的零件一般选择自由锻造;中小型零件可选择模锻件;一些小型零件可做成整体毛坯.(3)生产类型

大量生产的零件应选择精度和生产率都比较高的毛坯制造方法,如铸件采用金属模机器造型或精密铸造;锻件采用模锻,精锻;型材采用冷轧或冷拉型材;零件产量较小时应选择精度和生产率较低的毛坯制造方法.(4)现有生产条件

确定毛坯的种类及制造方法,必须考虑具体的生产条件,如毛坯制造的工艺水平,设备状况以及对外协作的可能性等.(5)充分考虑利用新工艺,新技术和新材料

随着机械制造技术的发展,毛坯制造方面的新工艺,新技术和新材料的应用也发展很快.如精铸,精锻,冷挤压,粉末冶金和工程塑料等在机械中的应用日益增加.采用这些方法大大减少了机械加工量,有时甚至可以不再进行机械加工就能达到加工要求,其经济效益非常显著.我们在选择毛坯时应给予充分考虑,在可能的条件下,尽量采用.10.2.3.3 毛坯形状和尺寸的确定

毛坯形状和尺寸,基本上取决于零件形状和尺寸.零件和毛坯的主要差别,在于在零件需要加工的表面上,加上一定的机械加工余量,即毛坯加工余量.毛坯制造时,同样会产生误差,毛坯制造的尺寸公差称为毛坯公差.毛坯加工余量和公差的大小,直接影响机械加工的劳动量和原材料的消耗,从而影响产品的制造成本.所以现代机械制造的发展趋势之一,便是通过毛坯精化,使毛坯的形状和尺寸尽量和零件一致,力求作到少,无切削加工.毛坯加工余量和公差的大小,与毛坯的制造方法有关,生产中可参考有关工艺手册或有关企业,行业标准来确定.在确定了毛坯加工余量以后,毛坯的形状和尺寸,除了将毛坯加工余量附加在零件相应的加工表面上外,还要考虑毛坯制造,机械加工和热处理等多方面工艺因素的影响.下面仅从机械加工工艺的角度,分析确定毛坯的形状和尺寸时应考虑的问题.(1)工艺搭子的设置

有些零件,由于结构的原因,加工时不易装夹稳定,为了装夹方便迅速,可在毛坯上制出凸台,即所谓的工艺搭子.工艺搭子只在装夹工件时用,零件加工完成后,一般都要切掉,但如果不影响零件的使用性能和外观质量时,可以保留.(2)整体毛坯的采用

在机械加工中,有时会遇到如磨床主轴部件中的三瓦轴承,发动机的连杆和车床的开合螺母等类零件.为了保证这类零件的加工质量和加工时方便,常做成整体毛坯,加工到一定阶段后再切开.(3)合件毛坯的采用

为了便于加工过程中的装夹,对于一些形状比较规则的小形零件,如 T 形键,扁螺母,小隔套等,应将多件合成一个毛坯,待加工到一定阶段后或者大多数表面加工完毕后,再加工成单件.图5.3a 为 T815 汽车上的一个扁螺母.毛坯取一长六方钢, 图 5.3b 表示在车床上先车槽,倒角;图 5.3c 表示在车槽及倒角后,用 24.5mm 的钻头钻孔.钻孔的同时也就切成若干个单件.合件毛坯,在确定其长度尺寸时,既要考虑切割刀具的宽度和零件的个数,还应考虑切成单件后,切割的端面是否需要进一步加工,若要加工,还应留有一定的加工余量.在确定了毛坯种类,形状和尺寸后,还应绘制一张毛坯图,作为毛坯生产单位的产品图样.绘制毛坯图,是在零件图的基础上,在相应的加工表面上加上毛坯余量.但绘制时还要考虑毛坯的具体制造条件,如铸件上的孔,锻件上的孔和空档,法兰等的最小铸出和锻出条件;铸件和锻件表面的起模斜度(拔模斜度)和圆角;分型面和分模面的位置等.并用双点划线在毛坯图中表示出零件的表面,以区别加工表面和非加工表面.10.2.4 工艺路线的拟订

工艺路线的拟订是制订工艺规程的关键,它制订的是否合理,直接影响到工艺规程的合理性,科学性和经济性.工艺路线拟订的主要任务是选择各个表面的加工方法和加工方案,确定各个表面的加工顺序以及工序集中与分散的程度,合理选用机床和刀具,确定所用夹具的大致结构等.关于工艺路线的拟订,经过长期的生产实践已总结出一些带有普遍性的工艺设计原则,但在具体拟订时,特别要注意根据生产实际灵活应用.10.2.4.1 表面加工方案的选择

(1)各种加工方法所能达到的经济精度及表面粗糙度

为了正确选择表面加工方法,首先应了解各种加工方法的特点和掌握加工经济精度的概念.任何一种加工方法可以获得的加工精度和表面粗糙度均有一个较大的范围.例如,精细的操作,选择低的切削用量,可以获得较高的精度,但又会降低生产率,提高成本;反之,如增大切削用量提高生产率,虽然成本降低了,但精度也降低了.所以对一种加工方法,只有在一定的精度范围内才是经济的,这一定范围的精度是指在正常的加工条件下(采用符合质量的标准设备,工艺装备和标准技术等级的工人,不延长加工时间)所能保证的加工精度.这一定范围的精度称为经济精度.相应的粗糙度称为经济表面粗糙度.各种加工方法所能达到的加工经济精度和表面粗糙度,以及各种典型表面的加工方案在机械加工手册中都能查到.这里要指出的是,加工经济精度的数值并不是一成不变的,随着科学技术的发展,工艺技术的改进,加工经济精度会逐步提高.(2)选择表面加工方案时考虑的因素

选择表面加工方案,一般是根据经验或查表来确定,再结合实际情况或工艺试验进行修改.表面加工方案的选择,应同时满足加工质量,生产率和经济性等方面的要求,具体选择时应考虑以下几方面的因素: 1)选择能获得相应经济精度的加工方法 例如加工精度为 IT7 ,表面粗糙度为 Ra0.4 m 的外圆柱面,通过精细车削是可以达到要求的,但不如磨削经济.2)零件材料的可加工性能 例如淬火钢的精加工要用磨削,有色金属圆柱面的精加工为避免磨削时堵塞砂轮,则要用高速精细车或精细镗(金刚镗).3)工件的结构形状和尺寸大小 例如对于加工精度要求为 IT7 的孔,采用镗削,铰削,拉削和磨削均可达到要求.但箱体上的孔,一般不宜选用拉孔或磨孔,而宜选择镗孔(大孔)或铰孔(小孔).4)生产类型 大批量生产时,应采用高效率的先进工艺,例如用拉削方法加工孔和平面,用组合铣削或磨削同时加工几个表面,对于复杂的表面采用数控机床及加工中心等;单件小批生产时,宜采用刨削,铣削平面和钻,扩,铰孔等加工方法,避免盲目地采用高效加工方法和专用设备而造成经济损失.5)现有生产条件 充分利用现有设备和工艺手段,发挥工人的创造性,挖掘企业潜力,创造经济效益.10.2.4.2 加工阶段的划分 (1)划分方法

零件的加工质量要求较高时,都应划分加工阶段.一般划分为粗加工,半精加工和精加工三个阶段.如果零件要求的精度特别高,表面粗糙度很细时,还应増加光整加工和超精密加工阶段.各加工阶段的主要任务是: 1) 粗加工阶段 主要任务是切除毛坯上各加工表面的大部分加工余量,使毛坯在形状和尺寸上接近零件成品.因此,应采取措施尽可能提高生产率.同时要为半精加工阶段提供精基准,并留有充分均匀 的加工余量,为后续工序创造有利条件.2) 半精加工阶段 达到一定的精度要求,并保证留有一定的加工余量,为主要表面的精加工作准备.同时完成一些次要表面的加工(如紧固孔的钻削,攻螺纹,铣键槽等).3) 精加工阶段 主要任务是保证零件各主要表面达到图纸规定的技术要求.4) 光整加工阶段 对精度要求很高( IT6 以上),表面粗糙度很小(小于 R a 0.2 m )的零件,需安排光整加工阶段.其主要任务是减小表面粗糙度或进一步提高尺寸精度和形状精度.(2)划分加工阶段的原因

1) 保证加工质量的需要 零件在粗加工时,由于要切除掉大量金属,因而会产生较大的切削力和切削热,同时也需要较大的夹紧力,在这些力和热的作用下,零件会产生较大的变形.而且经过粗加工后零件的内应力要重新分布,也会使零件发生变形.如果不划分加工阶段而连续加工,就无法避免和修正上述原因所引起的加工误差.加工阶段划分后,粗加工造成的误差,通过半精加工和精加工可以得到修正,并逐步提高零件的加工精度和表面质量,保证了零件的加工要求.2) 合理使用机床设备的需要 粗加工一般要求功率大,刚性好,生产率高而精度不高的机床设备.而精加工需采用精度高的机床设备,划分加工阶段后就可以充分发挥粗,精加工设备各自性能的特点,避免以粗干精,做到合理使用设备.这样不但提高了粗加工的生产效率,而且也有利于保持精加工设备的精度和使用寿命.3) 及时发现毛坯缺陷 毛坯上的各种缺陷(如气孔,砂眼,夹渣或加工余量不足等),在粗加工后即可被发现,便于及时修补或决定报废,以免继续加工后造成工时和加工费用的浪费.4) 便于安排热处理 热处理工序使加工过程划分成几个阶段,如精密主轴在粗加工后进行去除应力的人工时效处理,半精加工后进行淬火,精加工后进行低温回火和冰冷处理,最后再进行光整加工.这几次热处理就把整个加工过程划分为粗加工——半精加工——精加工——光整加工阶段.在零件工艺路线拟订时,一般应遵守划分加工阶段这一原则,但具体应用时还要根据零件的情况灵活处理,例如对于精度和表面质量要求较低而工件刚性足够,毛坯精度较高,加工余量小的工件,可不划分加工阶段.又如对一些刚性好的重型零件,由于装夹吊运很费时,也往往不划分加工阶段而在一次安装中完成粗精加工.还需指出的是,将工艺过程划分成几个加工阶段是对整个加工过程而言的,不能单纯从某一表面的加工或某一工序的性质来判断.例如工件的定位基准,在半精加工阶段甚至在粗加工阶段就需要加工得很准确,而在精加工阶段中安排某些钻孔之类的粗加工工序也是常有的.10.2.4.3 工序的划分

工序集中就是零件的加工集中在少数工序内完成,而每一道工序的加工内容却比较多;工序分散则相反,整个工艺过程中工序数量多,而每一道工序的加工内容则比较少.(1)工序集中的特点

① 有利于采用高生产率的专用设备和工艺装备,如采用多刀多刃,多轴机床,数控机床和加工中心等,从而大大提高生产率.② 减少了工序数目,缩短了工艺路线,从而简化了生产计划和生产组织工作.③ 减少了设备数量,相应地减少了操作工人和生产面积.④ 减少了工件安装次数,不仅缩短了辅助时间,而且在一次安装下能加工较多的表面,也易于保证这些表面的相对位置精度.⑤ 专用设备和工艺装置复杂,生产准备工作和投资都比较大,尤其是转换新产品比较困难.(2)工序分散特点 ① 设备和工艺装备结构都比较简单,调整方便,对工人的技术水平要求低.② 可采用最有利的切削用量,减少机动时间.③ 容易适应生产产品的变换.④ 设备数量多,操作工人多,占用生产面积大.工序集中和工序分散各有特点;在拟订工艺路线时,工序是集中还是分散,即工序数量是多还是少,主要取决于生产规模和零件的结构特点及技术要求.在一般情况下,单件小批生产时,多将工序集中.大批量生产时,既可采用多刀,多轴等高效率机床将工序集中,也可将工序分散后组织流水线生产;目前的发展趋势是倾向于工序集中.10.2.4.4 工序顺序的安排 (1) 机械加工工序的安排

1)基准先行 零件加工一般多从精基准的加工开始,再以精基准定位加工其它表面.因此,选作精基准的表面应安排在工艺过程起始工序先进行加工,以便为后续工序提供精基准.例如轴类零件先加工两端中心孔,然后再以中心孔作为精基准,粗,精加工所有外圆表面.齿轮加工则先加工内孔及基准端面,再以内孔及端面作为精基准,粗,精加工齿形表面.2)先粗后精 精基准加工好以后,整个零件的加工工序,应是粗加工工序在前,相继为半精加工,精加工及光整加工.按先粗后精的原则先加工精度要求较高的主要表面,即先粗加工再半精加工各主要表面,最后再进行精加工和光整加工.在对重要表面精加工之前,有时需对精基准进行修整,以利于保证重要表面的加工精度,如主轴的高精度磨削时,精磨和超精磨削前都须研磨中心孔;精密齿轮磨齿前,也要对内孔进行磨削加工.3)先主后次 根据零件的功用和技术要求.先将零件的主要表面和次要表面分开,然后先安排主要表面的加工,再把次要表面的加工工序插入其中.次要表面一般指键槽,螺孔,销孔等表面.这些表面一般都与主要表面有一定的相对位置要求,应以主要表面作为基准进行次要表面加工,所以次要表面的加工一般放在主要表面的半精加工以后,精加工以前一次加工结束.也有放在最后加工的,但此时应注意不要碰伤已加工好的主要表面.4)先面后孔 对于箱体,底座,支架等类零件,平面的轮廓尺寸较大,用它作为精基准加工孔,比较稳定可靠,也容易加工,有利于保证孔的精度.如果先加工孔,再以孔为基准加工平面,则比较困难,加工质量也受影响.(2)热处理工序的安排

热处理可用来提高材料的力学性能,改善工件材料的加工性能和消除内应力,其安排主要是根据工件的材料和热处理目的来进行.热处理工艺可分为两大类:预备热处理和最终热处理.1) 预备热处理 预备热处理的目的是改善加工性能,消除内应力和为最终热处理准备良好的金相组织.其热处理工艺有退火,正火,时效,调质等.① 退火和正火.退火和正火用于经过热加工的毛坯.含碳量高于 0.5 %的碳钢和合金钢,为降低其硬度易于切削,常采用退火处理;含碳量低于 0.5 %的碳钢和合金钢,为避免其硬度过低切削时粘刀,而采用正火处理.退火和正火尚能细化晶粒,均匀组织,为以后的热处理做准备.退火和正火常安排在毛坯制造之后,粗加工之前进行.② 时效处理.时效处理主要用于消除毛坯制造和机械加工中产生的内应力.为减少运输工作量,对于一般精度的零件,在精加工前安排一次时效处理即可.但精度要求较高的零件 ( 如坐标镗床的箱体等 ) ,应安排两次或数次时效处理工序.简单零件一般可不进行时效处理.除铸件外,对于一些刚性较差的精密零件 ( 如精密丝杠 ) ,为消除加工中产生的内应力,稳定零件加工精度,常在粗加工,半精加工之间安排多次时效处理.有些轴类零件加工,在校直工序后也要安排时效处理.③ 调质.调质即是在淬火后进行高温回火处理,它能获得均匀细致的回火索氏体组织,为以后的表面淬火和渗氮处理时减少变形做准备,因此调质也可作为预备热处理.由于调质后零件的综合力学性能较好,对某些硬度和耐磨性要求不高的零件,也可作为最终热处理工序.2) 最终热处理 最终热处理的目的是提高硬度,耐磨性和强度等力学性能.① 淬火.淬火有表面淬火和整体淬火.其中表面淬火因为变形,氧化及脱碳较小而应用较广,而且表面淬火还具有外部强度高,耐磨性好,而内部保持良好的韧性,抗冲击力强的优点.为提高表面淬火零件的机械性能,常需进行调质或正火等热处理作为预备热处理.其一般工艺路线为:下料一锻造一正火 ( 退火 ) 一粗加工一调质一半精加工一表面淬火一精加工.② 渗碳淬火.渗碳淬火适用于低碳钢和低合金钢,先提高零件表层的含碳量,经淬火后使表层获得高的硬度,而心部仍保持一定的强度和较高的韧性和塑性.渗碳分整体渗碳和局部渗碳.局部渗碳时对不渗碳部分要采取防渗措施 ( 镀铜或镀防渗材料 ) .由于渗碳淬火变形大,且渗碳深度一般在 0.5~2mm 之间,所以渗碳工序一般安排在半精加工和精加工之间.其工艺路线一般为:下料一锻造一正火一粗,半精加工一渗碳淬火一精加工.当局部渗碳零件的不渗碳部分,采用加大余量后切除多余的渗碳层的工艺方案时,切除多余渗碳层的工序应安排在渗碳后,淬火前进行.③ 渗氮处理.渗氮是使氮原子渗入金属表面获得一层含氮化合物的处理方法.渗氮层可以提高零件表面的硬度,耐磨性,疲劳强度和抗蚀性.由于渗氮处理温度较低,变形小,且渗氮层较薄 (一般不超过 0.6 ~ 0.7mm) ,因此渗氮工序应尽量靠后安排,常安排在精加工之间进行.为减小渗氮时的变形,在切削后一般需进行消除应力的高温回火.(3)检验工序的安排

检验工序一般安排在粗加工后,精加工前;送往外车间前后;重要工序和工时长的工序前后;零件加工结束后,入库前.(4)其它工序的安排

1)表面强化工序 如滚压,喷丸处理等,一般安排在工艺过程的最后.2)表面处理工序 如发蓝,电镀等一般安排在工艺过程的最后.3)探伤工序 如 X 射线检查,超声波探伤等多用于零件内部质量的检查,一般安排在工艺过程的开始.磁力探伤,荧光检验等主要用于零件表面质量的检验,通常安排在该表面加工结束以后.4)平衡工序 包括动,静平衡,一般安排在精加工以后.在安排零件的工艺过程中,不要忽视去毛刺,倒棱和清洗等辅助工序.在铣键槽,齿面倒角等工序后应安排去毛刺工序.零件在装配前都应安排清洗工序,特别在研磨等光整加工工序之后,更应注意进行清洗工序,以防止残余的磨料嵌入工件表面,加剧零件在使用中的磨损.10.2.5 加工余量的确定

10.2.5.1 加工余量的概念及其影响因素

在选择了毛坯,拟订出加工工艺路线之后,就需确定加工余量,计算各工序的工序尺寸.加工余量大小与加工成本有密切关系,加工余量过大不仅浪费材料,而且增加切削工时,增大刀具和机床的磨损,从而增加成本;加工余量过小,会使前一道工序的缺陷得不到纠正,造成废品,从而也使成本增加,因此,合理地确定加工余量,对提高加工质量和降低成本都有十分重要的意义.(1)加工余量的概念

在机械加工过程中从加工表面切除的金属层厚度称为加工余量.加工余量分为工序余量和加工总余量.工序余量是指为完成某一道工序所必须切除的金属层厚度,即相邻两工序的工序尺寸之差.加工总余量是指由毛坯变为成品的过程中,在某加工表面上所切除的金属层总厚度,即毛坯尺寸与零件图设计尺寸之差.由于毛坯尺寸和各工序尺寸不可避免地存在公差,因此无论是加工总余量还是工序余量实际上是个变动值,因而加工余量又有基本余量,最大余量和最小余量之分,通常所说的加工余量是指基本余量.加工余量,工序余量的公差标注应遵循"入体原则"即:"毛坯尺寸按双向标注上,下偏差;被包容表面尺寸上偏差为零,也就是基本尺寸为最大极限尺寸(如轴);对包容面尺寸下偏差为零,也就是基本尺寸为最小极限尺寸(如内孔).加工过程中,工序完成后的工件尺寸称为工序尺寸.由于存在加工误差,各工序加工后的尺寸也有一定的公差,称为工序公差.工序公差带的布置也采用"入体原则"法.表示加工余量及其公差的关系,不论是被包容面还是包容面,其加工总余量均等于各工序余量之和.Z = Z + Z + Z + …

加工余量还有双边余量和单边余量之分,平面加工余量是单边余量,它等于实际切削的金属层厚度.对于外圆和孔等回转表面,加工余量是指双边余量,即以直径方向计算,实际切削的金属为加工余量数值的一半.(2)确定加工余量应考虑的因素

为切除前工序在加工时留下的各种缺陷和误差的金属层,又考虑到本工序可能产生的安装误差而不致使工件报废,必须保证一定数值的最小工序余量.为了合理确定加工余量,首先必须了解影响加工余量的因素.影响加工余量的主要因素有: 1) 前工序的尺寸公差 由于工序尺寸有公差,上工序的实际工序尺寸有可能出现最大或最小极限尺寸.为了使上工序的实际工序尺寸在极限尺寸的情况下,本工序也能将上工序留下的表面粗糙度和缺陷层切除,本工序的加工余量应包括上工序的公差.2) 前工序的形状和位置公差 当工件上有些形状和位置偏差不包括在尺寸公差的范围内时,这些误差又必须在本工序加工纠正,在本工序的加工余量中必须包括它.3) 前工序的表面粗糙度和表面缺陷 为了保证加工质量,本工序必须将上工序留下的表面粗糙度和缺陷层切除.4)本工序的安装误差 安装误差包括工件的定位误差和夹紧误差,若用夹具装夹,还应有夹具在机床上的装夹误差.这些误差会使工件在加工时的位置发生偏移,所以加工余量还必须考虑安装误差的影响.10.2.5.2 确定加工余量的方法

确定加工余量的方法有 3 种:分析计算法,经验估算法和查表修正法.(1)分析计算法

本方法是根据有关加工余量计算公式和一定的试验资料,对影响加工余量的各项因素进行分析和综合计算来确定加工余量.用这种方法确定加工余量比较经济合理,但必须有比较全面和可靠的试验资料.目前,只在材料十分贵重,以及军工生产或少数大量生产的工厂中采用.(2)经验估算法

本方法是根据工厂的生产技术水平,依靠实际经验确定加工余量.为防止因余量过小而产生废品,经验估计的数值总是偏大,这种方法常用于单件小批量生产.(3)查表修正法

此法是根据各工厂长期的生产实践与试验研究所积累的有关加工余量数据,制成各种表格并汇编成手册,确定加工余量时,查阅有关手册,再结合本厂的实际情况进行适当修正后确定,目前此法应用较为普遍.10.2.6 工序尺寸及其公差的确定

机械加工过程中,工件的尺寸在不断地变化,由毛坯尺寸到工序尺寸,最后达到设计要求的尺寸.在这个变化过程中,加工表面本身的尺寸及各表面之间的尺寸都在不断地变化,这种变化无论是在一个工序内部,还是在各个工序之间都有一定的内在联系.应用尺寸链理论去揭示它们之间的内在关系,掌握它们的变化规律是合理确定工序尺寸及其公差和计算各种工艺尺寸的基础,因此,本节先介绍工艺尺寸链的基本概念,然后分析工艺尺寸链的计算方法以及工艺尺寸链的应用.10.2.6.1 工艺尺寸链的概念 (1)工艺尺寸链的定义

在零件的加工过程中,为了加工和检验的方便,有时需要进行一些工艺尺寸的计算.为使这种计算迅速准确,按照尺寸链的基本原理,将这些有关尺寸以一定顺序首尾相连排列成一封闭的尺寸系统,即构成了零件的工艺尺寸链,简称工艺尺寸链.(2)工艺尺寸链的组成

① 环 组成工艺尺寸链的各个尺寸都称为工艺尺寸链的环.② 封闭环 工艺尺寸链中间接得到的环称为封闭环.封闭环以下角标" 0 "表示,如" A 0 "," L ".③ 组成环 除封闭环以外的其它环都称为组成环.组成环分增环和减环两种.④ 增环 当其余各组成环保持不变,某一组成环增大,封闭环也随之增大,该环即为增环.一般在该环尺寸的代表符号上,加一向右的箭头表示.⑤ 减环 当其余各组成环保持不变,某一组成环增大,封闭环反而减小,该环即为减环.一般在该尺寸的代表符号上,加一向左的箭头表示.(3)工艺尺寸链的特征

① 关联性 组成工艺尺寸链的各尺寸之间必然存在着一定的关系,相互无关的尺寸不组成工艺尺寸链.工艺尺寸链中每一个组成环不是增环就是减环,其尺寸发生变化都要引起封闭环的尺寸变化.对工艺尺寸链中的封闭环尺寸没有影响的尺寸,就不是该工艺尺寸链的组成环.② 封闭性 尺寸链必须是一组首尾相接并构成一个封闭图形的尺寸组合,其中应包含一个间接得到的尺寸.不构成封闭图形的尺寸组合就不是尺寸链.(4)建立工艺尺寸链的步骤

① 确定封闭环 即加工后间接得到的尺寸.② 查找组成环 从封闭环一端开始,按照尺寸之间的联系,首尾相连,依次画出对封闭环有影响的尺寸,直到封闭环的另一端,形成一个封闭图形,就构成一个工艺尺寸链.查找组成环必须掌握的基本特点为:组成环是加工过程中"直接获得"的,而且对封闭环有影响.③ 按照各组成环对封闭环的影响,确定其为增环或减环 确定增环或减环可先给封闭环任意规定一个方向,然后沿此方向,绕工艺尺寸链依次给各组成环画出箭头,凡是与封闭环箭头方向相同的就是减环,相反的就是增环.10.2.6.2 工艺尺寸链的计算

尺寸链的计算方法有两种:极值法与概率法.极值法是从最坏情况出发来考虑问题的,即当所有增环都为最大极限尺寸而减环恰好都为最小极限尺寸,或所有增环都为最小极限尺寸而减环恰好都为最大极限尺寸,来计算封闭环的极限尺寸和公差.事实上,一批零件的实际尺寸是在公差带范围内变化的.在尺寸链中,所有增环不一定同时出现最大或最小极限尺寸,即使出现,此时所有减环也不一定同时出现最小或最大极限尺寸.概率法解尺寸链,主要用于装配尺寸链,其计算方法在装配中讲授.10.2.6.3 工序尺寸及其公差的确定 (1)基准重合时工序尺寸及公差的确定

当零件定位基准与设计基准(工序基准)重合时,零件工序尺寸及其公差的确定方法是:先根据零件的具体要求确定其加工工艺路线,再通过查表确定各道工序的加工余量及其公差,然后计算出各工序尺寸及公差;计算顺序是:先确定各工序余量的基本尺寸,再由后往前逐个工序推算,即由工件上的设计尺寸开始,由最后一道工序向前工序推算直到毛坯尺寸.(2)测量基准与设计基准不重合时工序尺寸及其公差的计算

在加工中,有时会遇到某些加工表面的设计尺寸不便测量,甚至无法测量的情况,为此需要在工件上另选一个容易测量的测量基准,通过对该测量尺寸的控制来间接保证原设计尺寸的精度.这就产生了测量基准与设计基准不重合时,测量尺寸及公差的计算问题. (3)定位基准与设计基准不重合时工序尺寸计算

在零件加工过程中有时为方便定位或加工,选用不是设计基准的几何要素作定位基准,在这种定位基准与设计基准不重合的情况下,需要通过尺寸换算,改注有关工序尺寸及公差,并按换算后的工序尺寸及公差加工.以保证零件的原设计要求.(4)中间工序的工序尺寸及其公差的求解计算

在工件加工过程中,有时一个基面的加工会同时影响两个设计尺寸的数值.这时,需要直接保证其中公差要求较严的一个设计尺寸,而另一设计尺寸需由该工序前面的某一中间工序的合理工序尺寸间接保证.为此,需要对中间工序尺寸进行计算.(5)保证应有渗碳或渗氮层深度时工艺尺寸及其公差的计算

零件渗碳或渗氮后,表面一般要经磨削保证尺寸精度,同时要求磨后保留有规定的渗层深度.这就要求进行渗碳或渗氮热处理时按一定渗层深度及公差进行(用控制热处理时间保证),并对这一合理渗层深度及公差进行计算.10.2.7 机械加工的生产率及技术经济分析 10.2.7.1 机械加工时间定额的组成 (1)时间定额的概念

所谓时间定额是指在一定生产条件下,规定生产一件产品或完成一道工序所需消耗的时间.它是安排作业计划,核算生产成本,确定设备数量,人员编制以及规划生产面积的重要依据.(2)时间定额的组成

1)基本时间 T 基本时间是指直接改变生产对象的尺寸,形状,相对位置以及表面状态或材料性质等工艺过程所消耗的时间.对于切削加工来说,基本时间就是切除金属所消耗的时间(包括刀具的切入和切出时间在内).2)辅助时间T 辅助时间是为实现工艺过程所必须进行的各种辅助动作所消耗的时间.它包括:装卸工件,开停机床,引进或退出刀具,改变切削用量,试切和测量工件等所消耗的时间.基本时间和辅助时间的总和称为作业时间.它是直接用于制造产品或零部件所消耗的时间.辅助时间的确定方法随生产类型而异.大批大量生产时,为使辅助时间规定得合理,需将辅助动作分解,再分别确定各分解动作的时间,最后予以综合;中批生产则可根据以往统计资料来确定;单件小批生产常用基本时间的百分比进行估算.3)布置工作地时间 T 布置工作地时间是为了使加工正常进行,工人照管工作地(如更换刀具,润滑机床,清理切屑,收拾工具等)所消耗的时间.它不是直接消耗在每个工件上的.而是消耗在一个工作班内的时间,再折算到每个工件上的.一般按作业时间的 2% ~ 7% 估算.4)休息与生理需要时间 T 休息与生理需要时间是工人在工作班内恢复体力和满足生理上的需要所消耗的时间.T 是按一个工作班为计算单位,再折算到每个工件上的.对机床操作工人一般按作业时间的 2% 估算.以上四部分时间的总和称为单件时间 T ,即 T = T +T + T + T

5)准备与终结时间T 准备与终结时间是指工人为了生产一批产品或零部件,进行准备和结束工作所消耗的时间.在单件或成批生产中,每当开始加工一批工件时,工人需要熟悉工艺文件,领取毛坯,材料,工艺装备,安装刀具和夹具,调整机床和其它工艺装备等所消耗的时间以及加工一批工件结束后,需拆下和归还工艺装备,送交成品等所消耗的时间.T 既不是直接消耗在每个工件上的,也不是消耗在一个工作班内的时间,而是消耗在一批工件上的时间.因而分摊到每个工件的时间为T / n ,其中 n 为批量.故单件和成批生产的单件工时定额的计算公式 T 应为: T = T +T / n

大批大量生产时,由于 n 的数值很大,T / n ≈ 0,故不考虑准备终结时间,即: T = T 10.2.7.2 提高机械加工生产率的途径

劳动生产率是指工人在单位时间内制造的合格产品的数量或制造单件产品所消耗的劳动时间.劳动生产率是一项综合性的技术经济指标.提高劳动生产率,必须正确处理好质量,生产率和经济性三者之间的关系.应在保证质量的前提下,提高生产率,降低成本.劳动生产率提高的措施很多,涉及到产品设计,制造工艺和组织管理等多方面,这里仅就通过缩短单件时间来提高机械加工生产率的工艺途径作一简要分析.由式( 5.8 )所示的单件时间组成,不难得知提高劳动生产率的工艺措施可有以下几个方面: (1)缩短基本时间

在大批大量生产时,由于基本时间在单位时间中所占比重较大,因此通过缩短基本时间即可提高生产率.缩短基本时间的主要途径有以下几种: 1)提高切削用量 增大切削速度,进给量和背吃刀量,都可缩短基本时间,但切削用量的提高受到刀具耐用度和机床功率,工艺系统刚度等方面的制约.随着新型刀具材料的出现,切削速度得到了迅速的提高,目前硬质合金车刀的切削速度可达 200m/min ,陶瓷刀具的切削速度达 500m/min .近年来出现的聚晶人造金刚石和聚晶立方氮化硼刀具切削普通钢材的切削速度达 900m/min .在磨削方面,近年来发展的趋势是高速磨削和强力磨削.国内生产的高速磨床和砂轮磨削速度已达 60m/s ,国外已达 90~120m/s ;强力磨削的切入深度已达 6~12mm ,从而使生产率大大提高.2)采用多刀同时切削每把车刀实际加工长度只有原来的三分之一; 每把刀的切削余量只有原来的三分之一;用三把刀具对同一工件上不同表面同时进行横向切入法车削.显然,采用多刀同时切削比单刀切削的加工时间大大缩短.3) 多件加工 这种方法是通过减少刀具的切入,切出时间或者使基本时间重合,从而缩短每个零件加工的基本时间来提高生产率.多件加工的方式有以下三种: ① 顺序多件加工.即工件顺着走刀方向一个接着一个地安装,这种方法减少了刀具切入和切出的时间,也减少了分摊到每一个工件上的辅助时间.②平行多件加工.即在一次走刀中同时加工 n 个平行排列的工件.加工所需基本时间和加工一个工件相同,所以分摊到每个工件的基本时间就减少到原来的 1/n ,其中 n 是同时加工的工件数.这种方式常见于铣削和平面磨削.③平行顺序多件加工.这种方法为顺序多件加工和平行多件加工的综合应用,.这种方法适用于工件较小,批量较大的情况.4)减少加工余量 采用精密铸造,压力铸造,精密锻造等先进工艺提高毛坯制造精度,减少机械加工余量,以缩短基本时间,有时甚至无需再进行机械加工,这样可以大幅度提高生产效率.(2)缩短辅助时间

辅助时间在单件时间中也占有较大比重,尤其是在大幅度提高切削用量之后,基本时间显著减少,辅助时间所占比重就更高.此时采取措施缩减辅助时间就成为提高生产率的重要方向.缩短辅助时间有两种不同的途径,一是使辅助动作实现机械化和自动化,从而直接缩减辅助时间;二是使辅助时间与基本时间重合,间接缩短辅助时间.1)直接缩减辅助时间 采用专用夹具装夹工件,工件在装夹中不需找正,可缩短装卸工件的时间.大批大量生产时,广泛采用高效气动,液动夹具来缩短装卸工件的时间.单件小批生产中,由于受专用夹具制造成本的限制,为缩短装卸工件的时间,可采用组合夹具及可调夹具.此外,为减小加工中停机测量的辅助时间,可采用主动检测装置或数字显示装置在加工过程中进行实时测量,以减少加工中需要的测量时间.主动检测装置能在加工过程中测量加工表面的实际尺寸,并根据测量结果自动对机床进行调整和工作循环控制,例如磨削自动测量装置.数显装置能把加工过程或机床调整过程中机床运动的移动量或角位移连续精确地显示出来,这些都大大节省了停机测量的辅助时间.2)间接缩短辅助时间 为了使辅助时间和基本时间全部或部分地重合,可采用多工位夹具和连续加工的方法.(3)缩短布置工作地时间

布置工作地时间,大部分消耗在更换刀具上,因此必须减少换刀次数并缩减每次换刀所需的时间,提高刀具的耐用度可减少换刀次数.而换刀时间的减少,则主要通过改进刀具的安装方法和采用装刀夹具来实现.如采用各种快换刀夹,刀具微调机构,专用对刀样板或对刀样件以及自动换刀装置等,以减少刀具的装卸和对刀所需时间.例如在车床和铣床上采用可转位硬质合金刀片刀具,既减少了换刀次数,又可减少刀具装卸,对刀和刃磨的时间.(4)缩短准备与终结时间

缩短准备与终结时间的途径有二:第一,扩大产品生产批量,以相对减少分摊到每个零件上的准备与终结时间;第二,直接减少准备与终结时间.扩大产品生产批量,可以通过零件标准化和通用化实现,并可采用成组技术组织生产.10.2.7.3 机械加工技术经济分析的方法

制订机械加工工艺规程时,在同样能满足工件的各项技术要求下,一般可以拟订出几种不同的加工方案,而这些方案的生产效率和生产成本会有所不同.为了选取最佳方案就需进行技术经济分析.所谓技术经济分析就是通过比较不同工艺方案的生产成本,选出最经济的加工工艺方案.生产成本是指制造一个零件或一台产品所必须的一切费用的总和.生产成本包括两大类费用:第一类是与工艺过程直接有关的费用叫工艺成本,约占生产成本的 70% ~ 75% ;第二类是与工艺过程无关的费用,如行政人员工资,厂房折旧,照明取暧等.由于在同一生产条件下与工艺过程无关的费用基本上是相等的,因此对零件工艺方案进行经济分析时,只要分析与工艺过程直接有关的工艺成本即可.(1)工艺成本的组成

工艺成本由可变费用和不变费用两大部分组成.1)可变费用 可变费用是与年产量有关并与之成正比的费用,用" V "表示(元 / 件).包括:材料费,操作工人的工资,机床电费,通用机床折旧费,通用机床修理费,刀具费,通用夹具费.2)不变费用 不变费用是与年产量的变化没有直接关系的费用.当产量在一定范围内变化时,全年的费用基本上保持不变,用" S "表示(元 / 年).包括:机床管理人员,车间辅助工人,调整工人的工资,专用机床折旧费,专用机床修理费,专用夹具费.

(2)工艺成本的计算 1)零件的全年工艺成本 E = V N +S

式中 E ——零件(或零件的某工序)全年的工艺成本(元 / 年); V ——可变费用(元 / 件); N ——年产量(件 / 年); S ——不变费用(元 / 年).由上述公式可见,全年工艺成本 E 和年产量 N 成线性关系.它说明全年工艺成本的变化Δ E与年产量的变化Δ N 成正比;又说明 S 为投资定值,不论生产多少,其值不变.2)零件的单件工艺成本

单件工艺成本 E 与年产量 N 呈双曲线关系.在曲线的 A 段, N 很小,设备负荷也低,即单件小批生产区,单件工艺成本 E 就很高,此时若产量 N 稍有增加(Δ N )将使单件成本迅速降低(ΔE ).在曲线 B 段, N 很大,即大批大量生产区.此时曲线渐趋水平,年产量虽有较大变化,而对单件工艺成本的影响却很小.这说明对于某一个工艺方案,当 S 值(主要是专用设备费用)一定时,就应有一个与此设备能力相适应的产量范围.产量小于这个范围时,由于 S/N 比值增大,工艺成本就增加.这时采用这种工艺方案显然是不经济的,应减少使用专用设备数,即减少 S 值来降低工艺成本.当产量超过这个范围时,由于 S/N 比值变小,这时就需要投资更大而生产率更高的设备,以便减少 V 而获得更好的经济效益.10.3 典型零件机械加工工艺过程 10.3.1 轴类零件加工分析 (1)轴类零件加工的工艺路线 1)基本加工路线

外圆加工的方法很多,基本加工路线可归纳为四条.① 粗车—半精车—精车

对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线.② 粗车—半精车—粗磨—精磨

对于黑色金属材料,精度要求高和表面粗糙度值要求较小,零件需要淬硬时,其后续工序只能用磨削而采用的加工路线.③ 粗车—半精车—精车—金刚石车

对于有色金属,用磨削加工通常不易得到所要求的表面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多用精车和金刚石车.④ 粗车—半精—粗磨—精磨—光整加工

对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线.2)典型加工工艺路线

轴类零件的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法.对普通精度的轴类零件加工,其典型的工艺路线如下: 毛坯及其热处理—预加工—车削外圆—铣键槽—(花键槽,沟槽)—热处理—磨削—终检.(1)轴类零件的预加工

轴类零件的预加工是指加工的准备工序,即车削外圆之前的工艺.校直 毛坯在制造,运输和保管过程中,常会发生弯曲变形,为保证加工余量的均匀及装夹可靠,一般冷态下在各种压力机或校值机上进行校值, (2) 轴类零件加工的定位基准和装夹

1)以工件的中心孔定位 在轴的加工中,零件各外圆表面,锥孔,螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则.中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则.当采用两中心孔定位时,还能够最大限度地在一次装夹中加工出多个外圆和端面.2)以外圆和中心孔作为定位基准(一夹一顶) 用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大.粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工.这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法.3)以两外圆表面作为定位基准 在加工空心轴的内孔时,(例如:机床上莫氏锥度的内孔加工),不能采用中心孔作为定位基准,可用轴的两外圆表面作为定位基准.当工件是机床主轴时,常以两支撑轴颈(装配基准)为定位基准,可保证锥孔相对支撑轴颈的同轴度要求,消除基准不重合而引起的误差.4)以带有中心孔的锥堵作为定位基准 在加工空心轴的外圆表面时,往往还采用代中心孔的锥堵或锥套心轴作为定位基准.锥堵或锥套心轴应具有较高的精度,锥堵和锥套心轴上的中心孔即是其本身制造的定位基准,又是空心轴外圆精加工的基准.因此必须保证锥堵或锥套心轴上锥面与中心孔有较高的同轴度.在装夹中应尽量减少锥堵的安装此书,减少重复安装误差.实际生产中,锥堵安装后,中途加工一般不得拆下和更换,直至加工完毕.图 10.1 锥堵和锥套心轴 a)锥堵 b)锥套心轴

10.3.2 典型套筒类零件的加工工艺分析 10.3.2.1 典型零件的工艺分析 (1)轴承套加工工艺分析

图 10.2 所示为 1 轴承套,材料为 ZQSn6-6-3 ,每批数量为 400 只.加工时,应根据工件的毛坯材料,结构形状,加工余量,尺寸精度,形状精度和生产纲领,正确选择定位基准,装夹方法和加工工艺过程,以保证达到图样要求.其主要技术要求为: 34mmjs7 外圆对 22mmH7 孔的径向圆跳动公差为 0.01mm ;左端面对 22mmH7 孔的轴线垂直度公差为 0.01mm .由此可见,该零件的内孔和外圆的尺寸精度和位置精度要求均较高.图 10.2 轴承套

该轴承套属于短套,其直径尺寸和轴向尺寸均不大,粗加工可以单件加工,也可以多件加工.由于单件加工时,每件都要留出工件备装夹的长度,因此原材料浪费较多,所以这里采用多件加工的方法.该轴承套的材料为 ZQSn6-6-3 .其外圆为 IT7 级精度,采用精车可以满足要求;内孔的精度也是 IT7 级,铰孔可以满足要求.内孔的加工顺序为钻—车孔—铰孔.(2)液压缸加工工艺分析

图 10.3 所示某液压缸零件图,生产纲领为成批生产.该液压缸属长套筒类零件,与前述短套类零件在加工方法及工件安装方式上都有较大差别.该液压缸内孔与活塞相配,因此表面粗糙度,形状及位置精度要求都较高.毛坯可选用无缝钢管,如果为铸件,其组织应紧密,无砂眼,针孔及疏松缺陷.必要时要用泵验漏.该液压缸为成批生产.图 10.3 液压缸简图

该零件长而壁薄,为保证内外圆的同轴度,加工外圆时参照空心主轴的装夹方法.即采用双顶尖顶孔口 1 o 30 1 的锥面或一头夹紧一头用中心架支承.加工内孔与一般深孔加工时的装夹方法相同,多采用夹一头,另一端用中心架托住外圆.孔的粗加工采用镗削,半精加工多采用铰削 (浮动铰孔 ) .该液压缸内孔的表面质量要求很高,内孔精加工后需滚压.也有不少套筒类零件以精细镗,珩磨,研磨等精密加工作为最终工序.内孔经滚压后,尺寸误差在 0.01mm 以内,表面粗糙度为 Ra0.16 或更小,且表面经硬化后更为耐磨.但是目前对铸造液压缸尚未采用滚压工艺,原因是铸件表面的缺陷 ( 如疏松,气孔,砂眼,硬度不均匀等 ) ,哪怕是很微小,都对滚压有很大影响,会导致滚压加工产生适得其反的效果.10.3.2.2 保证表面相互位置精度的方法及防止加工中工件变形的措施 (1)保证表面相互位置精度的方法

套类零件内外表面的同轴度以及端面与孔轴线的垂直度要求一般都较高,一般可用以下方法来满足: ① 在 1 次安装中完成内外表面及端面的全部加工,这样可消除工件的安装误差并获得很高的相互位置精度.但由于工序比较集中,对尺寸较大的套筒安装不便,故多用于尺寸较小的轴套车削加工.② 主要表面的加工分在几次安装中进行 ( 先加工孔 ) ,先加工孔至零件图尺寸,然后以孔为精基准加工外圆.由于使用的夹具 ( 通常为心轴 ) 结构简单,而且制造和安装误差较小,因此可保证较高的相互位置精度,在套筒类零件加工中应用较多.③ 主要表面的加工分在几次安装中进行 ( 先加工外圆 ) 先加工外圆至零件图尺寸,然后以外圆为精基准完成内孔的全部加工.该方法工件装夹迅速可靠,但一般卡盘安装误差较大,使得加工后工件的相互位置精度较低.如果欲使同轴度误差较小,则须采用定心精度较高的夹具,如弹性膜片卡盘,液性塑料夹头,经过修磨的三爪自定心卡盘和软爪等.(2)防止套类零件变形的工艺措施

套类零件的结构特点是孔的壁厚较薄,薄壁套类零件在加工过程中,常因夹紧力.切削力和热变形的影响而引起变形.为防止变形常采取—些工艺措施: 1) 将粗,精加工分开进行 为减少切削力和切削热的影响,使粗加工产生的变形在精加工中得以纠正.2) 减少夹紧力的影响 在工艺上采取以下措施减少夹紧力的影响: ① 采用径向夹紧时,夹紧力不应集中在工件的某一径向截面上,而应使其分布在较大的面积上,以减小工件单位面积上所承受的夹紧力.如可将工件安装在一个适当厚度的开口圆环中,在连同此环一起夹紧.也可采用增大接触面积的特殊卡爪.以孔定位时,宜采用张开式心轴装夹.② 夹紧力的位置宜选在零件刚性较强的部位,以改善在夹紧力作用下薄壁零件的变形.③ 改变夹紧力的方向,将径向夹紧改为轴向夹紧.④ 在工件上制出加强刚性的工艺凸台或工艺螺纹以减少夹紧变形,加工时用特殊结构的卡爪夹紧,加工终了时将凸边切去.3)减小切削力对变形的影响 ① 增大刀具主偏角和主前角,使加工时刀刃锋利,减少径向切削力.② 将粗,精加工分开,使粗加工产生的变形能在精加工中得到纠正,并采取较小的切削用量.③ 内外圆表面同时加工,使切削力抵销.4) 热处理放在粗加工和精加工之间 这样安排可减少热处理变形的影响.套类零件热处理后一般会产生较大变形,在精加工时可得到纠正,但要注意适当加大精加工的余量.

推荐第8篇:机械加工通用工艺守则

机械加工通用工艺守则

1.操作者应仔细看清图纸与工艺文件中的各项说明,保持图纸与工艺文件中的清洁和完整。并应严格按照设计图纸、工艺规程、技术标准,进行零部件的加工,不得随意自行更改。

2.操作者按照工艺要求察看所借用的工、夹、量、刃具,是否符合工艺及使用要求,若有疑问应即向段长或车间施工员联系。

3.操作者应将工、夹、量、刃具分别整齐地放置在工具箱上或其他适当的地方,但不准直接放在机床上,并应妥善保管好,不得任意拆卸,改变原来尺寸或形状。

4.在加工前,操作者首先应检查或抽查毛坯或经由上道工序加工并和本工序有关的尺寸,以确定余量是否符合工艺要求。

5.操作者应按照工艺规定的定位基准而安装零件:工艺未规定定位基面时,允许操作者自行选择定位基准和装夹方法,但必须保证加工出来的零件符合图纸和工艺上的尺寸与精度要求。在装夹工件前应将零件和夹具清洗干净。在定位基面处不得有铁屑、毛刺、污物及磕碰现象。

6.予压紧零件后,应按工艺要求进行零件的校正,若工艺卡片未作出规定时,可按下列要求校正零件:

(1) 在本工序或本工步中加工到成品尺寸,且以后该加工面不

再加工,装配时也不再调整或刮研,可以按定位基面到加工面的技术要求1/3值校正,最后加工完成后保持图纸中的技术要求。

(2) 在本工序或本工步中,所加工的加工面以后尚需加工或刮

研则按该加工面下道工序余量的1/3值校正,加工后并且

要按此检验。

(3) 本工序或本工步所加工的加工面已到成品尺寸,以后该加

工面不再加工,且图纸中、工艺卡片内对该加工面定位基

面,没有任何要求时,加工后应达到通用技术标准、部标

或厂标有关规定的要求。

7.按工艺要求进行压紧。如工艺上无要求,零件压紧时应注意压紧力的位置、大小和方向,并允许自加各种辅助支撑以增强刚性,压紧前与压紧后要测量,防止变形和磕碰。

8.凡加工面未到成品尺寸而工艺卡片中又未规定工序间的表面粗糙度时:粗车、粗铣、粗刨、粗镗、粗插的表面粗糙度应达到;磨前的各种加工面应达到:粗磨的表面粗糙度,外圆达到,平面应达到,轴孔达到;刮研前的加工面应达到~。

9.零件的首件检验当工艺未作规定时应该在自由状态下进行,不得压紧在夹具上或机床工作台面上或其他压紧情况下检验,换刀后的首件也应交检。

10.对连续加工的工序或工步,为避免最后成批报废,操作者应分工序

及工步进行自检,必要时可请检查员配合检查。

11.倒角与倒棱,沉割槽,都应按余量加深或加大,保证加工完成达到图纸要求或国标要求。

12.图纸中或工艺中未规定倒角倒棱的棱边处一律倒钝,一般情况下应在加工有关面时进行,如机械加工时无法倒钝,则最后由钳工倒钝。车内外螺纹时,口端都要倒成和螺距的大小及螺纹角度一样的成形角。零件倒毛刺应由操作者在本工序完成。

13.零件在各道序加工后应由操作者保持清洁,达到无屑、无水、无脏

物,并在适当的工位器具上存放整齐。经过研磨后的精密配合面必须洗净研磨剂。不立即进行下道工序加工的零件,加工面应采用防锈措施。

14.用磁力台吸住加工的各种零件,在加工后应该进行退磁。

15.零件各加工面除图纸及工艺规定的尺寸公差外,均应按未注公差制 造(包括形状和位置公差)。

16.工作前应首先检查机床各部位是否正常,机床空运转5~10分钟,使转速逐渐增高,以消除传动部分间隙,并保持良好的润滑状况。对于磨床磨头应点动和快速行程4~5次,工作台应以最大行程往返10-20次。

17.操作者不得私自拆掉机床的任何部分,在保险装置和安全罩壳拆下的情况下,严禁开车工作。

18.机床开动时不得擅离工作岗位,工作时应严格遵守安全操作规程的规定,合理使用劳动保护用品

19.用作精密加工的机床,严禁强力切削或进行粗加工,一般机床应按规定动作进行操作,杜绝野蛮操作。

20.严格遵守机床说明书中所规定的零件加工范围,不允许超规格。超负荷使用机床。

21.使用砂轮机应仔细检查砂轮有无裂缝,身体和头部应该偏离砂轮,磨削时用力不要过大,以防砂轮破裂,挡板间隙应经常调整,以免发生意外。

22.工作地点应保持清洁,工件坯料应摆放整齐。

23.交接班时,必须把本班的机床、工、夹、量、刃具的使用及加工情况,向下一班交待清楚。

24.操作者交班前必须把机床擦拭干净,润滑处按规定加注润滑油。

25.每班工作前应检查工件是否有变动,装夹是否紧固。

26.工件者应对零件数量负责,按签收数量交检,不得遗失和私自找料顶替。

27.工艺要求编号配套入库的零件如丝杠副、花键副、弧齿锥齿轮副、涡轮副等,须进行编号,成对入库、成对周转和成对摆放。

28.数控机床正式加工前,应进行机内外对刀编程校正,符合工艺要求

后,才能进行加工。

推荐第9篇:轴零件的机械加工工艺

重庆机电职业技术学院

课程设计说明书

设计名称: 机械制造工艺与机床夹具课程设计

题 目:设计“轴件”零件的机械加工工艺

规程(生产纲领:5000件)

学生姓名 专 业: 汽车制造与装配技术 班 级: 学 号: 指导教师: 日 期: 2017 年 4 月 23 日

重庆机电职业技术学院

课程设计任务书

汽车制造与装配技术 专 业

年级

一、设计题目

设计下图所示“轴件”零件的机械加工工艺规程(生产纲领:10000件)。材料:45,整体调质处理:241~269HBW。

二、主要内容

1.绘制产品零件图,了解零件的结构特点和技术要求,对零件进行结构分析和工艺分析。

2.确定毛坯的种类及制造方法。

3.拟定零件的机械加工工艺过程,选择各工序的加工设备和工艺装备,确定各工序的加工余量和工序尺寸及其公差,计算各工序的切削用量和工时定额。

4.填写机械加工工艺过程卡片、机械加工工序卡片。撰写设计说明书。

三、具体要求

产品零件图 1张 产品毛坯图 1张 机械加工工艺过程卡片 1份 机械加工工序卡片 1套 课程设计说明书 1份

四、进度安排

第一阶段:绘制零件图,工艺卡片(2天)

第二阶段:查阅资料,工艺方案比较,确定加工路线(2天) 第三阶段:确定各工序的加工余量和工序尺寸,计算各工序的切削用量和工时定额(3天)

第四阶段:整理说明书,填写工艺卡片(3天)

五、成绩评定

指导教师 签名 日期 年 月 日 系主任 审核 日期 年 月 日

重庆机电职业技术学院课程设计用纸

序言

机械制造工艺学课程设计是在我们完了大学的全部基础课、技术基础课以及大部分专业课之后进行的。这是我们在进行毕业设计之前对所学各课程的一次深入的综合 性的链接,也是一次理论联系实际的训练。因此,它在我们的大学学习生活中占有十分重要的地位。

就我个人而言,我希望能通过这次课程设计对自己未来将从事的工作进行一次适应性训练,从中锻炼自己的分析问题、解决问题的能力同,为今后参加祖国的现代化建设打下一个良好的基础。

由于能所限,设计尚有许多不足之处,恳请各位老师给予指教。

重庆机电职业技术学院课程设计用纸

目 录

第1版序言…………………………………………

一、传动轴的工艺性分析………………………………

1.零件的结构特点及应用…………………………..2.零件的工艺分析…………………………………

二、选择毛坯、确定毛坯尺寸、设计毛坯图…………. 1.选择毛坯………………………………………… 三. 选择传动轴的加工方法,制定工艺路线…………

1.定位基准的选择………………………………….2.零件表面加工方法的选择………………………..四.制定工艺路线………………………………………… 五.热处理工序安排……………………………………….六.机床设备的选用……………………………………… 1.选择机床…………………………………………..2.选用工艺设备…………………………………….七.课程设计心得体会…………………………………….八.参考文献………………………………………………..

重庆机电职业技术学院课程设计用纸

一、传动轴的工艺性分析

1.零件的结构特点及应用

轴类零件是机器中经常遇到的典型零件之一。它在机器中主要用于支承齿轮,带轮,凸轮以及连杆等传动件,以及传递扭矩。按结构形式不同,轴可以分为阶梯轴,锥度分轴,空心轴,曲轴,凸轮轴,偏心轴,各种丝杆等。它主要用来支承传动零部件,传递扭矩和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面,圆锥面,内孔和螺纹及相应的端面所组成。轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。

图示传动轴零件属于台阶轴零件,各外圆的直径相差不大,由圆柱面,螺纹,退刀槽,越程槽,键槽等组成。轴肩一般用来确定安装在轴上的零件的轴向位置,各槽的作用是使零件装配时有一个正确的位置,并使加工中磨削外圆或车螺纹时退刀方便;键槽用于安装键,以传递转矩;螺纹用于安装各种锁紧螺母和调整螺母。

2.零件的工艺分析

传动轴毛坯材料为45钢。该材料属于优质碳素钢,经热处理后具有良好的综合力学性能,即有较高的强度和较高的塑性,韧性,一般用来制作机床主轴,机床齿轮和其它受力不大的轴类零件。主要技术要求如下:

根据工作性能与条件,该轴图样规定了主要的尺寸,位置精度和较小的表面粗糙度值,并有热处理要求。这些技术要求必须在加工中给予保证。

二、选择毛坯、确定毛坯尺寸、设计毛坯图

1.选择毛坯

45钢是轴类零件的常用材料,它价格便宜经过调质后,可得到较好的切削性能,而且能够获得较高的强度和韧性等综合机械性能,调质后表面硬度可达241-269HBS。轴类毛坯,常用圆棒料和锻件,根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。毛坯经过加热锻造后,可使金属内部纤维组织表面均匀分布,获得较高的抗拉,抗弯及抗扭强度;锻造后的毛坯,能改善金属内部组织,提高其抗拉,抗弯等机械性能。同时,因锻件的形状和尺寸与零件相近,可以节约材料,减少切削加工的劳动量,降低生产成本。在选择锻件的制造方法时,并非是制造精度高就越好,需要综合考虑机械加工成本和毛坯制造成本,以达到

重庆机电职业技术学院课程设计用纸

零件制造总成本最低的目的。当生产批量较小,毛坯精度要求较低时,锻件一般采用自由锻造法生产。

根据传动轴的制造材料(45钢),毛坯类型可采用型材和锻件,现选用锻件;毛坯采用自由锻造法。

三. 选择传动轴的加工方法,制定工艺路线

1.定位基准的选择

合理选择定位基准,对于保证零件的尺寸和位置精度有着决定性的作用。由于该传动轴的几个主要配合表面(R0.8)及轴肩面(R0.8)对基准轴线A-B均有径向圆跳动和端面圆跳动的要求,它又是实心轴,所以应选择两端面中心孔为基准,采用双顶尖装夹方法,以保证零件的技术要求。

(1)传动轴零件的精基准

传动轴零件的加工,以两端的中心孔作为定位精基准。因为轴的设计基准是中心线,这样既符合基准重合原则,又符合基准统一原则,还能在一次装夹中最大限度地完成多个外圆及端面的加工,易于保证各轴颈间的同轴度以及端面的垂直度。

(2) 传动轴零件的粗基准

轴类零件的粗加工,可选择外圆表面作为定位粗基准,以此定位加工两端面和中心孔,为后续工序准备精基准。中心孔加工采用三爪自定心卡盘装夹热轧圆钢的毛坯外圆,车端面,钻中心孔。但必须注意,一般不能用毛坯外圆装夹两次钻两端面中心孔,而应该以毛坯外圆作为粗基准,先加工一个端面,钻中心孔,车出一端外圆;然后以已车过的外圆作基准。用三爪自定心卡盘装夹,车另一端面,钻中心孔。如此加工中心孔,才能保证两孔中心同轴。 2.零件表面加工方法的选择

本零件的加工面有外圆,端面,槽,螺纹面等,材料为45钢。根据传动轴零件上各加工表面的尺寸精度和表面的粗糙度确定各加工方法,其加工方法选择如下

轴类零件外圆加工方法

对于中小型铸铁和锻件,可以直接进行粗车,经过粗车后工件的精度可达到IT11-IT13,表面粗糙度Ra值可50微米至100微米,粗车可切除毛坯的大部分

重庆机电职业技术学院课程设计用纸

余量。对经过粗车的工件,采用半精车可达到IT8-IT19级精度,表面粗糙度Ra值可3.2微米至6.3微米。对于中等精度的加工表面,半精车可作为终加工工序,也可作为磨削或精加工的预加工工序。精车可作为最终加工工序或光整工序的预加工,精车后工件表面可达IT7-IT8级精度,表面粗糙度Ra值可0.8微米至1.6微米。

(1) 键槽加工方法

键槽是轴类零件上常见的机构,其中以普通平键应用最广泛,通常在普通立式铣床上用铣刀加工,我们不妨直接放到加工中心加工。 (2) 主要表面的加工方法

传动轴大都是回转表面,主要采用车削与外圆磨削成形。由于该传动轴的主要表面(Ra0.8)的公差等级(IT6)较高,表面粗糙度值Ra(0.8微米)较小,故车削后还需磨削。故主要外圆表面加工方案可为:粗车-半精车-磨削。 四.制定工艺路线 (1)划分加工阶段

传动轴主要表面的加工可划分为粗加工,半精加工,精加工三个阶段。该传动轴加工划分为三个阶段:粗车(粗车外圆,钻中心孔等),半精车(半精车各处外圆,台阶和次要表面等),粗,精磨(粗,精磨各处外圆),各阶段划分大致以热处理为界。 (2)安排加工顺序

遵循“先基准后其他”原则,首先加工精基准——钻中心及车表面的外圆。 1.遵循“粗后精”原则,先安排粗加工工序,后安排精加工工序。 2.遵循“先主后次”先加工主要表面——车外圆各个表面,后加工次要表面——铣键槽和加工各个小槽。

3.遵循“先面后孔”原则,先加工左右端面,再加工各个台阶面。(3)初步拟定工艺路线

定位基准面中心孔应在粗加工之前加工,在调质之后和磨削之前各需安排一次修研中心孔的工序。调质后修研中心孔为消除中心孔的热处理变形和氧化皮,磨削之前修研中心孔是为提高定位基准面的精度和减少圆柱面的表面粗糙度值。拟定传动轴的工艺过程时,在考虑主要表面加工的同时,还要考虑次要表面的加

重庆机电职业技术学院课程设计用纸

工。在半精加工Φ15mm,Φ22mm,Φ30mm,Φ17mm外圆时,应车到图样规定的尺寸,同时加工出各退刀槽,倒角和螺纹;两个键槽应该在半精车后以及磨削之前铣削加工出来,这样可以保证铣键槽时有精确的定位基准,又可避免在磨削后铣键槽时破坏已精工的外圆表面。 五.热处理工序安排

(1) 锻造毛坯在加工前,均需安排正火或退火处理,使钢材内部晶粒细化,消除锻造应力,降低材料硬度,改善切削加工性能。

(2) 调制一般安排在粗车之后,半精车之前,以获得良好的物理力学性能。 (3) 表面淬火一般安排在精加工之前,这样可以纠正因淬火引起的局部变形。

(4)精度要求高的轴,在局部淬火或粗磨之后,还需进行低温时效处理。

传动轴的热处理要根据其材料和使用要求确定。对于传动轴,正火,调质和表面淬火用得较多。该轴要求调制处理,并安排在粗车各外圆之后,半精车各外圆之前。综合上述分析,传动轴的工艺路线如下:

下料——车两端面,钻中心孔——粗车——调制——半精车——车槽,倒角,车螺纹——划键槽加工线——铣键槽——精车——修研中心孔——磨削——检验。

六.机床设备的选用

1.选择机床

根据传动轴的工艺特性,根据不同工艺选车床。工序3,4,7是粗车和半精车,成批生产不需要很高的生产率,故选用普通车床就可以,此选用CA6140。铣床选用X51。该零件磨削精度不高,选用一般的磨床即可,选用M131W。

2.选用工艺设备

(1)选择夹具

该零件的加工工艺不需要专用夹具。工艺装备采用通用夹具(三爪卡盘及顶尖)。

(2)选择刀具

粗车,半精车采用YT5,精车用YT15类车刀,铣刀采用直径为6mm的立式铣刀,切槽选用高速钢。

(3) 选择量具

重庆机电职业技术学院课程设计用纸

车削及键槽采用测量范围为0-300mm,规格为300×0.05的双面游标卡尺,磨削采用测量范围为25-50mm,读数值为0.01mm的外径千分尺。

七、课程设计心得体会

课程设计心得体会

在本次的机械课程设计中,我学到了很多,经过查阅很多资料,学会脚踏提升了我的自学能力和动手能力。

首先,在课程设计中,要谨慎,仔细,认真的对待每一个小的细节,一个小细节很可能导致总体的错误。在做每一件事时都要认真、细腻、不得半点马虎,这样会造成一些的错误。

其次,在课程设计时,要多查找资料,多看书,通过多方比对来确定设计中的参数,多借一些相关书籍来参考,但不是越多越好。在这设计过程中,体现自己单独设计的能力以及综合运用知识的能力,体会学以致用,突出自己劳动自己劳动成果喜悦心情,从中发现自己平时学习的不足和薄弱环节。

这次设计将我以前学过的公差与配合、机械制图、工程材料与热处理工艺等知识很好的串联了起来,起到了穿针引线的作用,巩固了所学知识的作用。

最后,在整个过程中也发现自己的不足,而导致理论和实践还不能结合,这也让我在以后的工作和生活中确定自己的目标和方向。

八.确定工序的切削用量

1.工序3,4——粗车

背尺刀量的确定 由于采用硬质YT5车刀,Φ40轴段取背吃刀量ap1=1.85mm,左端Φ35轴段ap2=4.85mm,左端Φ30轴段ap3=2.3mm,右端Φ30轴段ap4=2.35mm,右端Φ25轴段ap5=4.85mm,M20轴段ap6=2.5mm。

进给量的确定 取f=1mm/r。

进给速度的确定 取v=65m/min。Φ40轴段n=1000*65/3.14*47=690r/min,取710r/min,得切削实际速度v=710*3.14*47/1000=104.7m/min。左端Φ35轴段同Φ40轴段。 左端Φ30轴段,n=1000*65/3.14*37=559.4r/min, 取500r/min,

重庆机电职业技术学院课程设计用纸

得切削实际速度v=500*3.14*37/1000=58.1m/min。右端Φ30轴段 ,Φ25轴段同左端Φ30轴段。右端Φ20轴段n=1000*65/3.14*27=767r/min,取n=800r/min,得实际切削速度v=800*3.14*27/1000=67.8m/min。 1.工序7——半精车

背吃刀量的确定 各轴段的背吃到量ap=1mm。

进给量的确定 取f=0.5mm/r。

进给速度的确定 取v=90m/min。Φ40轴段n=1000*90/3.14*43.3=662r/min,取n=630r/min,得实际切削速度v=630*3.14*43.3/1000=85.7m/min。左端Φ35轴段n=1000*90/3.14*37.3=768r/min,取n=800r/min,得实际切削速度v=800*3.14*37.3/1000=93.4m/min

Φ

30

,n=1000*90/3.14*32.4=885r/min,取n=800r/min,得实际切削速度v=800*3.14*32.4/1000=81.4m/min

Φ

30

,n=1000*90/3.14*32.3=887r/min,取n=800r/min,得实际切削速度v=800*3.14*32.4/1000=81.4m/min

Φ

25

,n=1000*90/3.14*27.3=1050r/min,取n=1000r/min,得实际切削速度v=1000*3.14*27.3/1000=85.7m/min

Φ

20

,n=1000*90/3.14*22=1303r/min,取n=1250r/min,得实际切削速度v=1250*3.14*22/1000=86.4m/min。 2.工序10——精车

a) b) c) 背吃刀量的确定 Φ40轴段的背吃到量ap=0.65mm。 进给量的确定 取f=0.1mm/r。 进给速度的确定 取

v=130m/min,则

40

轴端n=1000*130/3.14*41.3=1002r/min,取n=1000r/min,得实际切削速度v=1000*3.14*41.3/1000=130m/min。

提高劳动生产率的方法 1.缩短单件时间定额

(1) 缩短基本时间

提高切削用量,减少切削行程,合并工步,多件加工都可以缩短基本时间。

重庆机电职业技术学院课程设计用纸

(2) 缩减辅助时间

直接缩减辅助时间,实现辅助动作的机械化和自动化可减少辅助时间。间接缩减辅助时间,使辅助时间与基本时间部分或全部重合,从而减少辅助时间。

2.采用先进工艺方法

(1) 对特硬,特脆,特韧材料及复杂型面采用特种加工来提高生产率。

(2) 在毛坯制造中广泛采用冷挤压,热挤压,粉末冶金,失蜡铸造,压力铸造,精锻和爆炸成型等新工艺,能提高毛坯精度,实现少,无切削加工,节约原材料,经济效果十分显著。

(3) 改进加工方法

3.进行高效及自动化加工

自动化是提高劳动生产率的一个极为重要的方向

推荐第10篇:机械加工工艺基础教案(推荐)

三、CA6140型卧式车床主要结构

(一)主轴箱

CA6140车床的主轴箱包括:箱体、主轴部件、传动机构、操纵机构、换向装置、制动装置和润滑装置等。其功用在于支承主轴和传动其旋转,并使其实现起动、停止、变速和换向等。

机床的主轴箱是一个比较复杂的运动部件,它的装配图包括展开图、各种向视图和剖面图,以表示出主轴箱的所有零件及其装配关系。

作。

1、主轴部件

主轴部件是主轴箱最重要的部分,由主轴、主轴轴承和主轴上的传动件、密封件等组成。

主轴前端可安装卡盘,用以夹持工件,并由其带动旋转。主轴的旋转精度、刚度和抗振性等对工件的加工精度和表面粗糙度有直接影响,因此对主轴部件的要求较高。

CA6140型车床的主轴是一个空心阶梯轴。其内孔是用于通过棒料或卸下顶尖时所用的铁棒,也可用于通过气动、液压或电动夹紧驱动装置的传动杆。主轴前端有精密的莫氏6号锥孔,用来安装顶尖或心轴,利用锥面配合的摩擦力直接带动心轴和工件转动。主轴后端的锥孔是工艺孔。

CA6140型卧式车床的主轴部件在结构上做了较大改进,由原来的三支承结构改为两支承结构;由前端轴向定位改为后端轴向定位。前轴承为P级精度的双列短圆柱滚子轴承,用于承受径向力。后轴承为一个推力球轴承和角接触球轴承,分别用于承受轴向力和径向力。

主轴的轴承的润滑都是由润滑油泵供油,润滑油通过进油孔对轴承进行充分润滑,并带走轴承运转所产生的热量。为了避免漏油,前后轴承均采用了油沟式密封装置。主轴旋转时,依靠离心力的作用,把经过轴承向外流出的润滑油甩到轴承端盖的接油槽里,然后经回油孔流回主轴箱。

主轴上装有三个齿轮,前端处为斜齿圆柱齿轮,可使主轴传动平稳,传动时齿轮作用在主轴上的轴向力与进给力方向相反,因此可减少主轴前支承所承受的轴向力。

主轴前端安装卡盘、拨盘或其它夹具的部分有多种结构形式。

2、开停和换向装置

CA6140型卧式车床采用的双向多片式摩擦离合器实现主轴的开停和换向。

其由结构相同的左右两部分组成,左离合器传动主轴正转,右离合器传动主轴反转。摩擦片有内外之分,且相间安装。如果将内外摩擦片压紧,产生摩擦力,轴I的运动就通过内外摩擦片而带动空套齿轮旋转;反之,如果松开,轴I的运动与空套齿轮的运动不相干,内外磨擦片之间处于打滑状态。正转用于切削,需传递的扭矩较大,而反转主要用于退刀,所以左离合器摩擦片数较多,而右离合器摩擦片数较少。

内外摩擦片之间的间隙大小应适当:如果间隙过大,则压不紧,摩擦片打滑,车床动力就显得不足,工作时易产生闷车现象,且摩擦片易磨损。反之,如果间隙过小,起动时费力;停车或换向时,摩擦片又不易脱开,严重时会导致摩擦片被烧坏。同时,由此也可看出,摩擦

离合器除了可传递动力外,还能起过载保险的作用。当机床超载时,摩擦片会打滑,于是主轴就停止转动,从而避免损坏机床。所以摩擦片间的压紧力是根据离合器应传递的额定扭矩来确定的,并可用拧在压套上的螺母9a和9b来调整。

3、制动装置

制动装置功用在于车床停车过程中克服主轴箱中各运动件的惯性,使主轴迅速停止转动,以缩短辅助时间。CA6140型卧式车床采用闸带式制动器实现制动。

制动带6的拉紧程度可由螺钉5进行调整。其调整合适的状态,应是停车时主轴能迅速停

止,而开车时制动带能完全松开。

(二)溜板箱

溜板箱的功用是:将丝杠或光杠传来的旋转运动转变为直线运动并带动刀架进给;控制刀架运动的接通、断开和换向;机床过载时控制刀架停止进给;手动操纵刀架移动和实现快速移动。

因此,溜板箱通常设有以下几种机构:

接通丝杠传动的开合螺母机构;

将光杠的运动传至纵向齿轮齿条和横向进给丝杠的传动机构;

接通、断开和转换纵、横向进给的转换机构;

保证机床工作安全的过载保险装置和互锁机构;

控制刀架运动的操纵机构;

改变纵、横向机动进给运动方向的换向机构;

快速空行程传动机构。

1、纵横向进给操纵机构

CA6140型车床的纵、横机动进给运动的接通、断开和换向,采用一个手柄集中操纵方式。当需要纵、横向移动刀架时,向相应的方向扳动操纵手柄1即可。

2、互锁机构

为了避免损坏机床,必须保证横、纵向机动进给运动和车螺纹进给运动不能同时接通。

为此,CA6140型车床的溜板箱中设有互锁机构。

因此,合上开合螺母后,纵横向机动进给都不能接通。而接通纵向或横向机动进给后,开合螺母都不能合上。

第七章 机械加工质量生产率和经济性

第一节 机械加工质量

机械零件的加工质量包括两个方面:加工精度和表面质量。

一、加工精度

(一)加工精度的概念

加工精度是指加工后的零件在形状、尺寸、表面相互位置等方面与理想零件的符合程度。它由尺寸精度、形状精度和位置精度组成。

尺寸精度:指加工后零件表面本身或表面之间的实际尺寸与理想尺寸之间的符合程度。

形状精度:指加工后零件表面本身的实际形状与理想零件表面形状之间的符合程度。

位置精度:指加工后零件各表面之间的实际位置与理想零件各表面之间的位置的符合程度。

(二)机械加工精度获得的方法

1.尺寸精度的获得方法

1)试切法 这是一种通过试切工件—测量—比较—调整刀具—再试切—……再调整,直至获得要求的尺寸的方法。

2)调整法 是按试切好的工件尺寸、标准件或对刀块等调整确定刀具相对工件定位基准的准确位置,并在保持此准确位置不变的条件下,对一批工件进行加工的方法。

3)定尺寸刀具法 在加工过程中采用具有一定尺寸的刀具或组合刀具,以保证被加工零件尺寸精度的一种方法。

4)自动控制法 通过由测量装置、进给装置和切削机构以及控制系统组成的控制加工系统,

把加工过程中的尺寸测量、刀具调整和切削加工等工作自动完成,从而获得所要求的尺寸精度的一种加工方法。

2.形状精度的获得方法

机械加工中获得一定形状表面的方法可以归纳为以下三种。

1)轨迹法 此法利用刀具的运动轨迹形成要求的表面几何形状。刀尖的运动轨迹取决于刀具与工件的相对运动,即成形运动。

用这种方法获得的形状精度取决于机床的成形运动精度。

2)成形法 此法利用成形刀具代替普通刀具来获得要求的几何形状的表面。机床的某些成形运动被成形刀具的刀刃所取代,从而简化了机床结构,提高了生产效率。

用这种方法获得的表面形状精度既取决于刀刃的形状精度,又有赖于机床成形运动的精度。

3)范成法 零件表面的几何形状是在刀具与工件的啮合运动中,由刀刃的包络面形成的。因而刀刃必须是被加工表面的共扼曲面,成形运动间必须保持确定的速比关系,加工齿轮常用此种方法。

3.位置精度的获得方法

在机械加工中,获得位置精度的方法主要有下述两种。

1)一次装夹法 工件上几个加工表面是在一次装夹中加工出来的。

2)多次装夹法 即零件有关表面间的位置精度是由刀具相对工件的成形运动与工件定位基准面(亦是工件在前几次装夹时的加工面)之间的位置关系保证的。在多次装夹法中,又可划分为:

① 直接装夹法 即通过在机床上直接装夹工件的方法。

② 找正装夹法 即通过找正工件相对刀具切削成形运动之间的准确位置的方法。

③ 夹具装夹法 即通过夹具确定工件与刀具切削刃成形运动之间的准确位置的方法。

二、表面质量

(一)表面质量的概念

零件的机械加工质量不仅指加工精度,而且也包括加工表面质量。表面质量是指机械加工后零件表面层的几何结构,以及受加工的影响表面层金属与基体金属性质产生变化的情况。表面层一般只有0.05~0.15mm。

在金属切削过程中,形成加工表面时发生金属的弹性变形和撕裂,同时伴随着切削力和切削热的作用,使整个工艺系统可能产生振动。因此已加工表面不可能是理想的光滑的表面,而是存在着粗糙度、波纹等几何形状误差以及划痕、裂纹等表面缺陷。零件表面层材料的化学和物理性质也发生一系列变化。

表面质量的主要内容包括以下方面:

1.表面的几何形状

2.表面层物理机械性能的变化

由于表面层沿深度的变化,所以表面层物理机械性能的变化主要有:

1)表面层的冷作硬化

2)表面层中残余应力的大小、方向及分布情况

3)表面层金相组织的改变

4)表面层的其它物理机械性能的变化

(二)表面质量对零件使用性能的影响

机械产品之所以要维修,更换某些零件或整个报废,一般不是因为它的零件发生了整体破坏,而是零件之间有相互运动的表面产生过大的磨损,从而改变了机械的性能,使之不能使用。有时即使零件发生了整体断裂,究其原因也往往是首先在零件表面上形成了疲劳裂纹,裂纹不断扩展,从而造成了零件的整体破坏。因此,了解零件的表面质量对其使用性能的影响,

正确的提出对零件表面质量的要求是非常重要的。

1.表面粗糙度对耐磨性的影响

零件的耐磨性除与材料的性能、热处理状态和润滑条件有关外,零件自身的表面粗糙度起着十分重要的作用。

2.冷作硬化对耐磨性的影响

冷作硬化可以显著地提高零件表面的耐磨性。

3.表面层应力集中及残余应力对疲劳强度的影响

零件表面微观不平度会在它的“波谷”底部造成应力集中。

4.表面质量对零件耐蚀性能的影响

降低表面粗糙度值可以提高零件的抗腐蚀性能。

5.表面质量对配合性质的影响

对于间隙配合,如果零件表面粗糙度值过大,初期磨损就较严重,导致磨损量加大,从而使配合间隙增大,破坏了原设计要求的配合精度。对于过盈配合,表面粗糙度值过大,装配中,在压入配合的表面上的部分微小波峰被挤平,使实际得到的过盈量比设计要求的小,降低了过盈表面的结合强度,从而影响零件联接的可靠性。

三、提高加工质量的措施

影响零件加工精度的因素很多,为了提高加工质量,保证机械加工精度,生产中采取的工艺措施很多,这里仅举一些实例,作简要说明。

(一)增强工件刚性的工艺措施

生产中常遇到一些零件刚性差,按传统的加工方法则很难达到加工精度,为此需采取工艺措施提高工件的刚性。

(二)采用减振、消振装置

第二节 生产率和经济性

一、生产率

(一)生产率的概念

机械加工的劳动生产率,是指工人在单位时间内加工出合格零件的数目。工艺过程的基本组成单元是工序,因此评价机械加工劳动生产率,主要看各个工序加工的单件工时,即该工序加工完成一个零件所需要的时间,以t单表示。组成:基本时间、辅助时间、服务时间、休息和自然需要时间、准备结束时间。

(二)提高生产率的途径

缩短基本时间、缩短辅助时间、缩短服务时间、缩短准备结束时间。

二、工艺过程的经济性

(一)生产成本和工艺成本

造一个产品或零件所必须的一切费用的总和,称为产品或零件的生产成本。生产成本由两大部分费用组成:即工艺成本和其它费用。

工艺成本是与工艺过程直接有关的费用,约占生产成本的70%~75%,它又包含可变费用(V)和不变费用(C)。

可变费用(V)的组成:材料费;操作工人工资;机床维持费;通用机床折旧费;刀具维持费折旧费;夹具维持费折旧费。它们与年产量直接有关。

不变费用(C)的组成:调整工人工资;专用机床折旧费;专用刀具折旧费;专用夹具折旧费。它们与年产量无直接关系。因为专用机床、专用工装是专门为某种零件加工所用的,不能用于其它零件,所以它们的折旧费、维持费等是确定的,与年产量无直接关系。

从而,一个零件的全年工艺成本E(单位为元/年)为: E = NV + C

(二)工艺成本与年产量的关系

(三)不同工艺方案经济性比较

对不同的工艺方案进行经济性比较时,有下列两种情况:

1.若两种工艺方案的基本投资相近或都采用现有设备时,则工艺成本既作为衡量各方案经济性的重要依据。

2.若两种工艺方案的基本投资相差较大时,必须考虑不同方案的基本投资差额的回收期限。

第五章 其他类型常用机床

第一节 铣床

一、铣床类型与用途

铣床是用于铣削加工的机床。

根据构造特点及用途,铣床的主要类型有:卧式升降台铣床、立式升降台铣床、工作台不升降铣床、圆工作台铣床、龙门铣床、铣床、仿形铣床和各种专门化铣床。

铣床是一种用途广泛的机床。它可以加工平面(水平面、垂直面、阶台面)、沟槽(键槽、T型槽、燕尾槽等)、分齿零件(齿轮、链轮、棘轮、花键轴等)、螺旋形表面(螺纹、螺旋槽)及各种曲面。此外,还可用于对回转体表面及内孔进行加工,以及进行切断工作等。

二、各类铣床主要特点

铣床使用的是旋转的多齿刀具,生产效率较高。但是,由于铣削加工为断续切削,铣刀的每个刀齿的切削层参数随时都在变化,所以铣削力的大小和方向也在不断变化,容易引起机床振动。因此,铣床在结构上要求有较高的刚度和抗振性。

(一)万能升降台铣床

万能升降台铣床的主轴为水平布置,属卧式升降台铣床,主要用于铣削平面、沟槽和成形表面。

在工作台和床鞍之间有一层回转盘,它可以相对床鞍在水平面内调整±45°偏转,改变工作台的移动方向,从而可加工斜槽、螺旋槽等。

此外,还可换用立式铣头,插头等附件,扩大机床的加工范围。

(二)立式升降台铣床

立式升降台铣床与卧式升降台铣床的主要区别在于安装铣刀的机床主轴是垂直于工作台面。 除立铣头外其它主要组成部件与卧式升降台铣床相同。铣头可以在垂直平面内调整角度,主轴可沿其轴线方向进给或调整位置。

立式铣床用于加工平面、沟槽、台阶,还可铣削斜面、螺旋面、模具型腔和凸模成形表面等。

(三)其他常用铣床

1、龙门铣床

龙门铣床是一种大型的高效通用机床,它在结构上呈柜架式布局,具有较高的刚度及抗振性。主要用于大中型工件的平面、沟槽加工。可以进行粗铣、半精铣和精铣加工。

2、工作台不升降铣床

工作台不升降铣床一般为立式布局,工作台不作升降运动,机床的垂直进给运动由安装在立柱上的主轴箱作升降运动来实现。这种铣床由于工作台层次少,刚性好,适用于加工外形为中等或大尺寸的工件。

工作台不升降铣床根据工作台面的形状,可分为矩形工作台式和圆形工作台式两类。

第二节 钻床和镗床

钻床和镗床都是加工内孔的机床,主要用于加工外形复杂,没有对称旋转轴线的工件,如杠杆、盖板、箱体、机架等零件上的单孔或孔系。

一、钻床

钻床类机床的主要工作是用孔加工刀具进行各种类型的孔加工。主要用于钻孔和扩孔,也可以用来铰孔、攻螺纹、锪沉头孔及锪凸台端面。

钻床分为坐标镗钻床、深孔钻床、摇臂钻床、台式钻床、立式钻床、卧式钻床、铣钻床、中心孔钻床等。

(一)立式钻床

立式钻床是钻床中应用较广的一种,其特点是主轴轴线垂直布置,且位置固定,需调整工件位置,使被加工孔中心线对准刀具的旋转中心线。由刀具旋转实现主运动,同时沿轴向移动作进给运动。因此,立式钻床适用于加工中、小型工件。

多轴立式钻床是立式钻床的一种,可对孔进行不同内容的加工或同时加工多个孔,大大提高了生产效率。

台式钻床实质上是一种加工小孔的立式钻床,结构简单小巧,使用方便,适于加工小型零件上的小孔。

(二)摇臂钻床

对于体积和质量都比较大的工件,在立式钻床上加工很不方便,此时可以选用摇臂钻床进行加工。

主轴箱可沿摇臂上的导轨横向调整位置,摇臂可沿立柱的圆柱面上、下调整位置,还可绕立柱转动。加工时,工件固定不动,靠调整主轴的位置,使其中心对准被加工孔的中心,并快速夹紧,保持准确的位置。摇臂钻床广泛地应用于单件和中、小批生产中,加工大、中型零件。

如果要加工任意方向和任意位置的孔和孔系,可以选用万向摇臂钻床,机床主轴可在空间绕二特定轴线作回转。机床上端还有吊环,可以吊放在任意位置。故它适于加工单件、小批生产的大中型工件。

为了提高钻削加工效率,目前正在发展钻削加工中心。集钻孔、攻螺纹和铣削于一体,可得到很高的加工精度和生产率。

二、镗床

镗床类机床主要工作是用镗刀进行镗孔,也可进行铣平面、车凸缘、切螺纹等工作。有卧式镗床、立式镗床、落地镗床、金刚镗床和坐标镗床等多种类型。

(一)卧式镗床

卧式镗床又称万能镗床,可以进行孔加工、车端面、车凸缘、车螺纹和铣平面等。尤其适于加工箱体零件中尺寸较大、精度较高且相互位置要求严格的孔系。

(二)落地镗床

为适应某些庞大而笨重工件的加工,产生了落地镗床。

落地镗床具有万能性大、集中操纵、移动部件的灵敏度高、操作方便等特点。

为提高生产效率和加工精度,在落地镗床的基础上还发展了以铣削为主的铣镗床。

(三)坐标镗床

坐标镗床主要用于镗削高精度的孔,特别适用于加工相互位置精度很高的孔系,如钻模、镗模和量具等零件上的精密孔加工。

坐标镗床制造精度很高,具有良好的刚度和抗振性,最主要特点是具有坐标位置的精密测量装置,加工时,按直角坐标来精确定位。

坐标镗床还可钻孔、扩孔、铰孔等工作。也可以用于精密刻度、划线、及孔距和直线尺寸的测量等工作。所以坐标镗床是一种万能性很强的精密机床。

坐标镗床有立式的和卧式的,立式坐标镗床又有单柱和双柱之分,以适应不同的加工需要。

金刚镗床是一种高速精镗床,采用很高的切削速度、极小的背吃刀量和进给量,可加工出质量很高的表面。适于成批、大量生产中,加工精密孔。

第四章 典型机床工作运动分析

二、CA6140型卧式车床传动系统分析

机床的加工过程中,需要有多少个运动就应该有多少条传动链。所有这些传动链和它们之间的相互联系就组成了一台机床的传动系统。分析传动系统也就是分析各传动链,分析各传动链时,应按下述步骤进行:

(1)根据机床所具有的运动,确定各传动链两端件。

(2)根据传动链两端件的运动关系,确定计算位移量。

(3)根据计算位移量及传动链中各传动副的传动比,列出运动平衡式。

(4)根据运动平衡式,推导出传动链的换置公式。

传动链中换置机构的传动比一经确定,就可根据运动平衡式计算出机床执行件的运动速度或位移量。

要实现机床所需的运动,CA6140型卧式车床的传动系统需具备以下传动链:实现主运动的主传动链;

实现螺纹进给运动的螺纹进给传动链;

实现纵向进给运动的纵向进给传动链;

实现横向进给运动的横向进给传动链;

实现刀架快速退离或趋近工件的快速空行程传动链。

(一)主运动传动链

1、传动路线

CA6140型卧式车床主运动,是由主电动机经三角皮带传至主轴箱中的轴I,轴I上装有一个双向多片式摩擦离合器M1,用以控制主轴的启动停止和换向。轴I的运动经离合器M1和轴II--III间变速齿轮传至轴III,然后分两路传递给主轴。

(1)高速传动路线 主轴VI上的滑移齿轮Z50处于左边位置,运动经齿轮副直接传给主轴。

(2)中低速传动路线 主轴VI上的滑移齿轮Z50处于右边位置,且使齿式离合器M2接合,运动经轴III-IV-V间的背轮机构和齿轮副传给主轴。

传动路线是分析和认识机床的基础,常用的方法是“抓两端,连中间”:首先找到传动链的两端件,然后按照运动传递或联系顺序,从一个端件到另一个端件,依次分析各传动轴之间的传动结构和运动传递关系。

2、主轴的转速级数与转速计算

根据传动系统图和传动路线表达式,主轴正转可获得2´3´(2´2-1)+2´3=24级不同转速。同理,主轴反转12级。

主轴的转速可按下列运动平衡式计算:

n主

主轴反转一般不用来进行车削,而是为了在车螺纹时,使刀架在主轴与刀架之间的传动链不脱开的情况下退回至起始位置,以免下次走刀发生“乱扣”现象.同时为了节省退刀时间,主轴反转转速高于正转转速。

(二)螺纹进给运动传动链

CA6140型卧式车床螺纹进给运动传动链,可以保证机床车削公制、英制、模数制和径节制四种标准螺纹。

此外,还可以车削大导程、非标准和较精密的螺纹。这些螺纹可以是右旋的,也可以是左旋的。不同标准的螺纹用不同的参数表示其螺距。

无论车削哪一种螺纹,都必须在加工中保证主轴每转一转,刀具准确地移动被加工螺纹一个导程的距离。由此可列出螺纹进给传动链的运动平衡式:

1(主轴)×u0×ux×L丝=L工

由上式可知,被加工螺纹的导程正比于传动链中换置机构的可变传动比。为此,车削不同标准和不同导程的各种螺纹时,必须对螺纹进给传动链进行适当调整,使其传动比根据不同种类螺纹的标准数列作相应改变。

公制螺纹是我国常用的螺纹,在国家标准中已规定了其标准螺距值。公制螺纹的标准螺距是按分段等差数列的规律排列的(参见表4-6),为此,螺纹进给传动链的变速机构也应按分段等差数列的规律变换其传动比。这一要求是通过适当调整进给箱中的变速机构来实现的。

车削公制螺纹时,进给箱中的离合器M

3、M4脱开,M5接合。其运动由主轴VI经齿轮副,轴IX至轴XI间的左右螺纹换向机构,挂轮,传至进给箱的轴XII,然后再经齿轮副,轴XIII--XIV间的滑移齿轮变速机构(基本螺距机构),齿轮副传至轴XV,接下去再经轴XV—XVII间的两组滑移齿轮变速机构(增倍机构)和离合器M5传动丝杠XVIII旋转。合上溜板箱中的开合螺母,使其与丝杠啮合,便带动了刀架纵向移动。其传动路线表达式如下:

其中,u基为轴XIII-XIV间变速机构的可变传动比,共8种:26/

28、28/

28、32/

28、36/

28、19/

14、20/

14、33/

21、36/21,即6.5/

7、7/

7、8/

7、9/

7、9.5/

7、10/

7、11/

7、12/7。它们近似按等差数列的规律排列,是获得各种螺纹导程的基本机构,故通常称之为基本螺距机构,或基本组。

u倍为轴XV-XVII间变速机构的可变传动比,共4种:28/35×(35/28)、28/35×(15/48)、18/45×(35/28)、18/45×(15/48),即

1、1/

2、1/

4、1/8。它们按倍数关系排列,用于扩大机床车削螺纹导程的种数,一般称之为增倍机构,或增倍组。

根据传动系统图或传动链的传动路线表达式,可列出车削公制螺纹的运动平衡式:

L=kP=1(主轴)u基u倍´12 化简得:

L=7u基u倍

由此可得8´4=32种导程值,其中符合标准的只有20种(见表4-6)

由上述可知,利用基本组中各传动副传动,可以车削出按等差数列规律排列的基本导程值;经过增倍组后,又可把由基本组得到的8种基本导程值按1:2:4:8的关系增大或缩小,两种变速机构的不同组合,便可得到常用的、按分段等差数列的规律排列的标准导程(或螺距)的公制螺纹。

加工其它不同种类和标准的螺纹时,只要通过离合器不同的离合状态和挂轮适当组合即可。

(三)机动进给传动链

实现一般车削时刀架机动进给的纵向和横向进给传动链,由主轴至进给箱中轴XVII的传动路线与车公制或英制常用螺纹的传动路线相同,其后运动经齿轮副传至光杠XIX(此时离合器M5脱开,齿轮Z28与轴XIX 齿轮Z56 啮合),再由光杠经溜板箱中的传动机构,分别传至光杠齿轮齿条机构和横向进给丝杠XXVII,使刀架作纵向或横向机动进给,其纵向机动进给传动路线表达式如下:

溜板箱中的双向牙嵌式离合器M

8、M9和齿轮传副组成的两个换向机构,分别用于变换纵向和横向进给运动的方向。利用进给箱中的基本螺距机构和增倍机构,以及进给传动链的不同传动路线,可获得纵向和横向进给量各64种。 纵向和横向进给传动链的两端件的计算位移为:

纵向进给:主轴转一转———刀架纵向移动f 纵(单位:mm)

横向进给:主轴转一转———刀架横向移动f 横(单位:mm)

由传动分析可知,横向机动进给在其与纵向机动进给传路线一致时,所得的横向进给量是纵向进给量的一半。

(四)刀架的快速移动传动路线

刀架的快速移动是使刀具机动地快速退离或接近加工部位,以减轻工人的劳动强度和缩短辅助时间。当需要快速移动时,可按下快速移动按钮,装在溜板箱中的快速电动机(0.25kW,2800r/min)的运动便经齿轮副传至轴XX,然后再经溜板箱中与机动进给相同的传动路线传至刀架,使其实现纵向和横向的快速移动。

了节省辅助时间及简化操作,在刀架快速移动过程中光杠仍可继续传动,不必脱开进给传动链。这时,为了避免光杠和快速电动机同时传动轴XX而导致其损坏,在齿轮Z56 及轴XX之间装有超越离合器,即可避免二者发生的矛盾。

超越离合器结构原理如教材图4-4所示。

第二节 金属切削原理及其应用

金属的切削过程是一个复杂的过程,在这一过程中形成切屑、产生切削力、切削热与切削温度,刀具磨损等许多现象,研究这些现象及变化规律,对于合理使用与设计刀具,夹具和机床,保证加工质量,减少能量消耗,提高生产率和促进生产技术发展都有很重要的意义。

一、切削变形

(一)切削变形特点和切屑的种类

如图所示,金属压缩实验,当金属试件受挤压时,在其内部产生主应力的同时,还将在与作用力大致成45°方向的斜截面产生最大切应力,在切应力达到屈服强度时将在此方向剪切滑移。

金属刀具切削时相当于局部压缩金属的压块,使金属沿一个最大剪应力方向产生滑移。

如图所示当切屑层达到切削刃OA(OA代表始滑移面)处时,切应力达到材料屈服强度,产生剪切滑移,切削层移到OM面上,剪切滑移终止,并离开切削刃后形成了切屑,然后沿前面流出。

始滑移面OA与终滑移面OM之间的变形区称为第一变形区,宽度很窄(约0.02~0.2mm),故常用OM剪切面亦称滑移面来表示,它与切削速度的夹角称为剪切角φ。

当切屑沿前面流出时,由于受到前面挤压和摩擦作用,在前面摩擦阻力的作用下,靠近前面的切屑底层金属再次产生剪切变形。使切屑底层薄的一层金属流动滞缓,流动滞缓的一层金属称为滞流层,这一区域又称为第二变形区。

工件已加工表面受到钝圆弧切削刃的挤压和后面的摩擦,使已加工表面内产生严重变形,已加工表面与后面的接触区称为第三变形区。

这三个变形区不是独立的,而是有着紧密的联系和相互影响。

根据被切的金属剪切滑移后形成切屑的外形不同,可将切屑分成以下四种类型。

1.带状切屑

2.节状切屑(挤裂切屑)

3.粒状切屑(单元切屑)

4.崩碎切屑

切屑的形态随切削条件的不同可互相转化。

(二)切削变形程度的表示方法

(三)刀具前面上的摩擦与积屑瘤

切屑流经刀具前面时,在高压力的作用下产生剧烈的摩擦并产生很高的温度,刀屑接触区可分成粘结区和滑动区两部分。

粘结区的摩擦为内摩擦,切削时由于高压和高温作用,切屑底部流速要比切屑的上层缓慢,从而在切屑底部形成了一个滞流层,内摩擦就是滞流层与其上层金属在切屑内部的摩擦,这部分的切向力等于被切材料的剪切屈服点,它不同于金属接触面滑动摩擦。

滑动区的摩擦为外摩擦,即滑动摩擦,摩擦力的大小与摩擦系数和法向正压力有关,而与接

触面积大小无关。在粘结区内,切应力是常数,且等于材料的剪切屈服强度,在滑动区内则随着距离切削刃越远而逐渐减小,在整个接触区内平均正应力亦随着距切削刃越远而减小。在刀屑间的两种摩擦中,力的大小一般占总摩擦力的85%左右,所以研究前面摩擦中应以内摩擦为主。

由于刀屑接触面的粘结摩擦及滞流作用,在中速或较低的切削速度切削塑性金属材料时,经常在刀具前面粘结一些工件材料,形成一个硬度很高的楔块,这楔块称为积屑瘤。

从实验得知,积屑瘤的金相组织与工件母材料相比未发生相变,它是受了强烈塑性变形的被切材料的堆积物,剧烈的加工硬化使之硬度大幅提高。它是逐渐形成的,经过一个生成、长大、脱落的周期性过程。

积屑瘤的存在可代替刀刃切削,并对切削刃有一定的保护作用;同时增大了实际工作前角,减小了切削变形。但由它堆积的钝圆弧刃口造成挤压和过切现象,使加工精度降低,积屑瘤脱落后粘附在已加工表面上恶化表面粗糙度,所以,在精加工时应避免积屑瘤产生。

影响积屑瘤的主要因素有工件材料,切削层、刀具前角及切削液等,工件材料塑性越大,刀屑间摩擦系数和接触长度越大,容易生成积屑瘤。

切削速度对切屑瘤影响很大,切削速度很低时,由于摩擦系数较小,很少产生积屑瘤。在切削速度υc=20m/min左右,切削温度约为300℃时,最易产生积屑瘤,且高度最大。切削速度是通过平均温度和平均摩擦系数影响积屑瘤的。

减小进给量,增大刀具前角,提高刃磨质量,合理选用切削液,使摩擦和粘结减少,均可达到抑制积屑瘤的作用。

(四)已加工表面变形和加工硬化

任何刀具的切削刃都很难磨得绝对锋利,当在钝圆弧切削刃和其邻近的狭小后面的切削挤压摩擦下,切屑晶体向下滑动绕过刃口形成已加工表面。使已加工表面层的金属晶粒发生扭曲挤紧,破碎等,构成了已加工表面上的变形区。

已加工表面经过严重塑性变形而使表面原硬度增高,这种现象称为加工硬化(冷硬)。

金属材料经硬化后在表面上会出现细微裂纹和残余应力,从而降低了加工质量和材料的疲劳强度,增加下道工序加工困难,加速刀具磨损,所以在切削时应设法避免或减轻加工硬化现象。

(五)影响切削变形的因素

切削变形的程度主要决定于剪切角和摩擦系数大小。

影响切削变形的主要因素有工件材料,前角,切削用量。

工件材料的强度、硬度越高,刀屑间正压力则增大,平均正应力会增加,因此,摩擦系数下降,剪切角增大,切削变形减小。而切削塑性较高的材料,则变形较大。

刀具前角越大,切削刃越锋利,使剪切角增大,变形系数减小,因此,切削变形减小。

切削速度对切削变形的影响,切削速度是通过切削温度和积屑瘤影响切屑变形的。切削速度在3~20m/min范围内提高,积屑瘤高度随着增加,刀具实际前角增大,故变形系数减小。当20m/min 左右时,积屑瘤高度最高,ξ值最小。在20~40m/minn范围内提高,积屑瘤逐渐消失,刀具实际剪切角减小,ξ增大。当>40m/min 时,由于切削温度逐渐升高,变形系数ξ减小。切削铸铁等脆性金属时,一般不产生积屑瘤,随着切削速度的增大,变形系数则缓慢地减小。

进给量增大,使切削厚度增加,正压力增大,平均正应力增大,因此,μ下降,剪切角φ增大,使ξ减小。同时,由于各切削层的变形和应力分布不均匀,近前发面处的金属变形和应力大,离前刀面越远的金属层变形和应力越小。切削厚度增加,近前刀面处发生剧烈变形层增加不多,切削平均变形减小,使变形系数变小。

二、切削力

(一)切削力的来源和分解

切削过程中,刀具施加于工件使工件材料产生变形,并使多余材料变为切屑所需的力称为切削力

而工件低抗变形施加于刀具称为切削抗力,在分析切削力以及切削机理时,切削力与切削抗力意义相同。

刀具切削工件时,由于切屑与工件内部产生弹性,塑性变形抗力,切屑与工件对刀具产生摩擦阻力,形成刀具对工件作用一个合力F,由于其大小,方向不易确定。

因此,为了便于测量、计算及研究,通常将合力F分解成三个分力。

(二)工作功率

(三)计算切削力的经验公式

(四)单位切削力和单位切削功率

(五)影响切削力的主要因素

1.工件材料的影响,工件材料的硬度和强度越高,虽然切削变形会减小,但由于剪切屈服强度增高,产生的切削力会越大;工件材料强度相同时,塑性和韧性越高,切削变形越大,切削与刀具间摩擦增加,切削力会越大。切削铸铁时变形小,摩擦小,故产生的切削力小。

2.切削用量的影响 进给量、背吃刀量增大,二者都会使切削力增大,而实际上背吃刀量对切削力的影响要比进给量大。其主要原因在于,αp增大一倍时,切削厚度hD 不变,而切削宽度bD 则增大一倍,切削刃上的切削负荷也随之增大一倍,即变形力和摩擦成倍增加,最终导致了切削力以成倍增加;f增大一倍时,切削宽度bD不变,只是切削厚度hD增大一倍,平均变形减小,故切削力增加不到一倍。

切削速度对切削力的影响:切削塑性金属时,在40m/min时,由于积屑瘤的产生与消失,使刀具前角增大或减小,引起变形系数的变化,导致了切削力的变化;当>40m/min,切削温度升高,使平均摩擦系数下降,切削力也随之下降。切削灰铸铁等脆性材料时,塑性变形很小,且刀屑间的摩擦也很小,因此,υc对影响不大。

3.刀具几何参数的影响 前角对Fc影响较大。前角增大,切削变形减小,故切削力减小。主偏角对进给力Ff和背向力Fp影响较大,当кr增大时Ff增大而Fp 则减小。刃倾角对背切削力FP影响较大,因为λs由正值向负值变化时,会使顶向工件轴线的背向力增大。

此外刀尖圆弧半径,刀具磨损程度等因素对切削力也有一定的影响。

三、切削温度与切削液

由它引起的切削温度的升高会影响刀具磨损和耐用度,同时抑制了切削速度的提高,还将导致工件、机床,刀具和夹具的热变形,降低零件的加工精度和表面质量。

(一)切削热的产生和传散

提高切削速度,由摩擦生成的热量增多,但切屑带走的热量也增加,在刀具中热量减少,在工件中热量更少,所以高速切削时,切屑温度很高,在工件和刀具中温度较低,这有利于加工顺利进行。

(二)切削区温度分布和切削温度的测量

切削区温度一般是指切屑,工件和刀具按触表面上的平均温度,在正交平面内刀具、工件和切屑中温度分布规律如图2—19所示。

刀具与切屑接触面摩擦大,不易散热,产生的温度值最高;切屑带走热量最多,它的平均温度高于刀具、工件上的平均温度。

切削温度测量方法很多,目前以利用物体的热电效应来进行温度测量的热电偶法应用较多,其测量简单方便。

(三)影响切削温度的因素

切削温度的高低决定于产生热量多少和传散热量快慢两方面因素。切削时影响产生热量和传散热量的因素有:切削用量、工件材料的性能,刀具几何参数和冷却条件等。

切削用量对切削温度的影响,当υc、αp和f增加时,由于切削变形功和摩擦功增大,所以切削温度升高。其中切削速度影响最大,当υc增加一倍时,由于摩擦生热增多,切削温度约增加32%,进给量f的影响次之,当f增加一倍,切削温度约增加18%,因为f增加切削变形增加较少,并且改善了散热条件,故热量增加不多。背吃刀量αp影响最小,αp增加一倍时,切削温度约增加7%,这是因为αp增加使切削宽度增加,增大了热量的传散面积。

工件材料主要是通过硬度、强度和导热系数影响切削温度。

刀具几何参数中影响切削温度最明显的因素是前角γo和主偏角κr,其次是刀尖圆弧半径rε。前角γo增大,切削变形和摩擦产生的热较少,故切削温度下降,但 γo 过大散热变差,使切削温度升高。主偏角κr减少,切削变形摩擦增加,但κr减小切削宽度增大,改善了散热条件,由于散热起主要作用,故切削温度下降。增大刀尖圆弧半径能增大散热面积,降低切削温度。

刀具磨损后,刀具后面与已加工表面摩擦加大,切削刃变钝,使刃区前方对切屑的挤压作用增大,切屑变形增大,会使切削温度升高。在加工时,使用切削液也是降低切削温度的重要措施。

(四)切削液的选用

在切削过程中,合理使用切削液能有效减少切削刃,降低切削温度,从而能延长刀具寿命,改善已加工表面质量和精度。

1.切削液的作用

冷却作用、润滑作用、清洗作用、防锈作用等。

2.切削液的种类及选用

(1)水溶液 一般常用于粗加工和普通磨削加工中。

(2)乳化液 一般材料的粗加工常用乳化液,难加工材料的切削,常使用极压乳化液。

(3)切削油 一般材料的精加工常使用切削油,如普通精车、螺纹精加工等。

第11篇:机械加工工艺基础知识点总结

机械加工工艺基础知识点总结

一、机械零件的精度

1.了解极限与配合的术语、定义和相关标准。理解配合制、公差等级及配合种类。掌握极限尺寸、偏差、公差的简单计算和配合性质的判断。

1.1基本术语:尺寸、基本尺寸、实际尺寸、极限尺寸、尺寸偏差、上偏差、下偏差、(尺寸)公差、标准公差及等级(20个公差等级,IT01精度最高;IT18最低)、公差带位置(基本偏差,了解孔、轴各28个基本偏差代号)。 1.2配合制:

(1)基孔制、基轴制;配合制选用;会区分孔、轴基本偏差代号。 (2)了解配合制的选用方法。

(3)配合类型:间隙、过渡、过盈配合

(4)会根据给定的孔、轴配合制或尺寸公差带,判断配合类型。 1.3公差与配合的标注 (1)零件尺寸标注 (2)配合尺寸标注

2.了解形状、位置公差、表面粗糙度的基本概念。理解形位公差及公差带。 2.1几何公差概念:

1)形状公差:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。

2)位置公差:位置度、同心度、同轴度。作用:控制形状、位置、方向误差。 3)方向公差:平行度、垂直度、倾斜度、线轮廓度、面轮廓度。 4)跳动公差:圆跳动、全跳动。 2.2几何公差带: 1)几何公差带 2)几何公差形状 3)识读

3.正确选择和熟练使用常用通用量具(如钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺等)及专用量具(如螺纹规、平面样板等),并能对零件进行准确测量。3.1常用量具:

(1)种类:钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺。 (2)识读:刻度,示值大小判断。

(3)调整与使用及注意事项:校对零点,测量力控制。 3.2专用量具:

(1)种类:螺纹规、平面角度样板。 (2)调整与使用及注意事项 3.3量具的保养

(1)使用前擦拭干净

(2)精密量具不能量毛坯或运动着的工伯 (3)用力适度,不测高温工件 (4)摆放,不能当工具使用 (5)干量具清理

(6)量具使用后,擦洗干净涂清洁防锈油并放入专用的量具盒内。

二、金属材料及热处理 1.理解强度、塑性、硬度的概念。

2.了解工程用金属材料的分类,能正确识读常用金属材料的牌号。2.1金属材料分类及牌号的识读: 2.1.1黑色金属:

(1)定义:通常把以铁及以铁碳为主的合金(钢铁)称为黑色金属。

(2)铸铁:灰铸铁HT抗拉强度(σb)200(MPa)、可锻铸铁KT(H黑心、Z珠光体)抗拉强度(σb)300-伸长率0

6、球墨铸铁QT抗拉强度(σb)400-伸长率18。(3)碳钢:

按含碳量分:低、中、高碳钢。

按质量分:普通、优质、高级优质。 按用途分:

普通:Q235A:一般工程用,屈服强度Q数值235等级A。

优质碳素结构钢:45钢:机械零件用,中碳钢,含碳量0.45%);

碳素工具钢:T12:工具钢,用于刃具、量具、模具用钢,含碳量1.2%。 铸造碳钢:铸钢ZG屈服强度不低于270-抗拉强度不低于500。 (4)合金钢: 按用途分:

合金结构钢:40Cr:合金结构钢,含碳量0.40%,合金含量小于1.5%不标。 合金工具钢:9SiCr:合金工具钢,含碳量0.9%,Si、Cr含量小于1.5%;

高速钢(锋钢)W18Cr4V:含碳量0.7-0.8%,钨含量18%,Cr含量4%,V含量小于1.5%。 2.1.2有色金属

(1)有色的定义:除黑色金属以外的金属材料,统称为有色金属。 (2)了解铝及铝合金。 (2)了解铜及铜合金。

3、了解退火、正火、淬火、回火、调质、时效处理的目的、方法及应用。重点放在应用上。

(1)退火:消除铸件、焊接件、冷作件毛坯的应力。 (2)时效处理:长时间退火,消除毛坯的应力。

(3)正火:消除锻件毛坯的锻造应力。调整硬度,便于加工。

(4)调质:淬火 回火,综合机械性能。一般安排在粗加工后、精加工前。 (5)回火:消除淬火应力。温度越高,钢的强度、硬度下降,而塑性、韧性提高。

4.了解金属表面处理的一般方法。(1)表面淬火

(2)(表层)化学处理:电镀

物理处理:防锈漆因在金属表面外处理,不在此列。

第12篇:典型零件的机械加工工艺分析

第4章 典型零件的机械加工工艺分析

本章要点

本章介绍典型零件的机械加工工艺规程制订过程及分析,主要内容如下: 1.介绍机械加工工艺规程制订的原则与步骤。

2.以轴类、箱体类、拨动杆零件为例,分析零件机械加工工艺规程制订的全过程。

本章要求:通过典型零件机械加工工艺规程制订的分析,能够掌握机械加工工艺规程制订的原则和方法,能制订给定零件的机械加工工艺规程。

§4.1 机械加工工艺规程的制订原则与步骤

§4.1.1机械加工工艺规程的制订原则

机械加工工艺规程的制订原则是优质、高产、低成本,即在保证产品质量前提下,能尽量提高劳动生产率和降低成本。在制订工艺规程时应注意以下问题:

1.技术上的先进性

在制订机械加工工艺规程时,应在充分利用本企业现有生产条件的基础上,尽可能采用国内、外先进工艺技术和经验,并保证良好的劳动条件。 2.经济上的合理性

在规定的生产纲领和生产批量下,可能会出现几种能保证零件技术要求的工艺方案,此时应通过核算或相互对比,一般要求工艺成本最低。充分利用现有生产条件,少花钱、多办事。 3.有良好的劳动条件

在制订工艺方案上要注意采取机械化或自动化的措施,尽量减轻工人的劳动强度,保障生产安全、创造良好、文明的劳动条件。

由于工艺规程是直接指导生产和操作的重要技术文件,所以工艺规程还应正确、完整、统一和清晰。所用术语、符号、计量单位、编号都要符合相应标准。必须可靠地保证零件图上技术要求的实现。在制订机械加工工艺规程时,如果发现零件图某一技术要求规定得不适当,只能向有关部门提出建议,不得擅自修改零件图或不按零件图去做。

§4.1.2 制订机械加工工艺规程的内容和步骤 1.计算零件年生产纲领,确定生产类型。

2.对零件进行工艺分析

在对零件的加工工艺规程进行制订之前,应首先对零件进行工艺分析。其主要内容包括:

(1)分析零件的作用及零件图上的技术要求。

(2)分析零件主要加工表面的尺寸、形状及位置精度、表面粗糙度以及设计基准等;

(3)分析零件的材质、热处理及机械加工的工艺性。

92 3.确定毛坯

毛坯的种类和质量对零件加工质量、生产率、材料消耗以及加工成本都有密切关系。毛坯的选择应以生产批量的大小、零件的复杂程度、加工表面及非加工表面的技术要求等几方面综合考虑。正确选择毛坯的制造方式,可以使整个工艺过程更加经济合理,故应慎重对待。在通常情况下,主要应以生产类型来决定。 4.制订零件的机械加工工艺路线

(1)确定各表面的加工方法。在了解各种加工方法特点和掌握其加工经济精度和表面粗糙度的基础上,选择保证加工质量、生产率和经济性的加工方法。

(2)选择定位基准。根据粗、精基准选择原则合理选定各工序的定位基准。 (3)制订工艺路线。在对零件进行分析的基础上,划分零件粗、半精、精加工阶段,并确定工序集中与分散的程度,合理安排各表面的加工顺序,从而制订出零件的机械加工工艺路线。对于比较复杂的零件,可以先考虑几个方案,分析比较后,再从中选择比较合理的加工方案。 5.确定各工序的加工余量和工序尺寸及其公差。

6.选择机床及工、夹、量、刃具。机械设备的选用应当既保证加工质量、又要经济合理。在成批生产条件下,一般应采用通用机床和专用工夹具。 7.确定各主要工序的技术要求及检验方法。 8.确定各工序的切削用量和时间定额。

单件小批量生产厂,切削用量多由操作者自行决定,机械加工工艺过程卡片中一般不作明确规定。在中批,特别是在大批量生产厂,为了保证生产的合理性和节奏的均衡,则要求必须规定切削用量,并不得随意改动。 9.填写工艺文件

§4.2 轴类零件的加工工艺制订

轴类零件是机器中的常见零件,也是重要零件,其主要功用是用于支承传动零部件(如齿轮、带轮等),并传递扭矩。轴的基本结构是由回转体组成,其主要加工表面有内、外圆柱面、圆锥面,螺纹,花键,横向孔,沟槽等。

轴类零件的技术要求主要有以下几个方面:

(l)直径精度和几何形状精度

轴上支承轴颈和配合轴颈是轴的重要表面,其直径精度通常为IT5~IT9级,形状精度(圆度、圆柱度)控制在直径公差之内,形状精度要求较高时,应在零件图样上另行规定其允许的公差。

(2)相互位置精度

轴类零件中的配合轴颈(装配传动件的轴颈)对于支承轴颈的同轴度是其相互位置精度的普遍要求。普通精度的轴,配合轴颈对支承轴颈的径向圆跳动一般为0.01~0.03mm,高精度轴为0.001~0 .005mm。此外,相互位置精度还有内外圆柱面间的同轴度,轴向定位端面与轴心线的垂直度要求等。

93 (3)表面粗糙度

根据机器精密程度的高低,运转速度的大小,轴类零件表面粗糙度要求也不相同。支承轴颈的表面粗糙度Ra值一般为0.16~0.63μm,配合轴颈Ra值为0.63~2.5μm。

各类机床主轴是一种典型的轴类零件,图4-1所示为车床主轴简图。下面以该车床主轴加工为例,分析轴类零件的工艺过程。

图4-1 车床主轴简图

§4.2.1 主轴的主要技术要求分析

1.支承轴颈的技术要求 一般轴类零件的装配基准是支承轴颈,轴上的各精密表面也均以其支承轴颈为设计基准,因此轴件上支承轴颈的精度最为重要,它的精度将直接影响轴的回转精度。由图4-1见本主轴有三处支承轴颈表面,(前后带锥度的A、B面为主要支承,中间为辅助支承)其圆度和同轴度(用跳动指标限制)均有较高的精度要求。

2.螺纹的技术要求 主轴螺纹用于装配螺母,该螺母是调整安装在轴颈上的滚动轴承间隙用的,如果螺母端面相对于轴颈轴线倾斜,会使轴承内圈因受力而倾斜,轴承内圈歪斜将影响主轴的回转精度。所以主轴螺纹的牙形要正,与螺母的间隙要小。必须控制螺母端面的跳动,使其在调整轴承间隙的微量移动中,对轴承内圈的压力方向正。

3.前端锥孔的技术要求 主轴锥孔是用于安装顶尖或工具的莫氏锥炳,锥孔的轴线必须与支承轴颈的轴线同轴,否则影响顶尖或工具锥炳的安装精度,加工时使工件产生定位误差。

94 4.前端短圆锥和端面的技术要求 主轴的前端圆锥和端面是安装卡盘的定位面,为保证安装卡盘的定位精度其圆锥面必须与轴颈同轴,端面必须与主轴的回转轴线垂直。

5.其它配合表面的技术要求 如对轴上与齿轮装配表面的技术要求是:对A、B轴颈连线的圆跳动公差为0.015mm,以保证齿轮传动的平稳性,减少噪音。

上述的(1)、(2)项技术要求影响主轴的回转精度,而(3)、(4)项技术要求影响主轴作为装配基准时的定位精度,而第(5)项技术要求影响工作噪音,这些表面的技术要求是主轴加工的关键技术问题。

综上所述,对轴类零件,可以从回转精度、定位精度、工作噪音这三个方面分析其技术要求。

§4.2.2 主轴的材料、毛坯和热处理

1.主轴材料和热处理的选择。一般轴类零件常用材料为45钢,并根据需要进行正火、退火、调质、淬火等热处理以获得一定的强度、硬度、韧性和耐磨性。

对于中等精度而转速较高的轴类零件,可选用40Cr等牌号的合金结构钢,这类钢经调质和表面淬火处理,使其淬火层硬度均匀且具有较高的综合力学性能。精度较高的轴还可使用轴承钢GCr15和弹簧钢65Mn,它们经调质和局部淬火后,具有更高的耐磨性和耐疲劳性。

在高速重载条件下工作的轴,可以选用20CrMnTi、20Mn2B、20Cr等渗碳钢,经渗碳淬火后,表面具有很高的硬度,而心部强度和冲击韧性好。

在实际应用中可以根据轴的用途选用其材料。如车床主轴属一般轴类零件,材料选用45钢,预备热处理采用正火和调质,最后热处理采用局部高频淬火。

2.主轴的毛坯。轴类毛坯一般使用锻件和圆钢,结构复杂的轴件(如曲轴)可使用铸件。光轴和直径相差不大的阶梯轴一般以圆钢为主。外圆直径相差较大的阶梯轴或重要的轴宜选用锻件毛坯,此时采用锻件毛坯可减少切削加工量,又可以改善材料的力学性能。主轴属于重要的且直径相差大的零件,所以通常采用锻件毛坯。

§4.2.3 主轴加工的工艺过程

一般轴类零件加工简要的典型工艺路线是:毛坯及其热处理→轴件预加工→车削外圆→铣键槽等→最终热处理→磨削。

某厂生产的车床主轴如图4-1所示,其生产类型为大批生产;材料为45钢;毛坯为模锻件。该主轴的加工工艺路线如表4-1。

§4.2.4 主轴加工工艺过程分析 1.定位基准的选择

在一般轴类零件加工中,最常用的定位基准是两端中心孔。因为轴上各表面的设计基准一般都是轴的中心线,所以用中心孔定位符合基准重合原则。

95 同时以中心孔定位可以加工多处外圆和端面,便于在不同的工序中都使用中心孔定位,这也符合基准统一原则。

当加工表面位于轴线上时,就不能用中心孔定位,此时宜用外圆定位,例如表4-1中的第10序钻主轴上的通孔,就是采用以外圆定位方法,轴的一端用卡盘夹外圆,另一端用中心架架外圆,即夹一头,架一头。作为定位基准的外圆面应为设计基准的支承轴颈,以符合基准重合原则。如上述工艺过程中的17和23序所用的定位面。

表4-1 车床主轴加工工艺过程

96

97

98

99

此外,粗加工外圆时为提高工件的刚度,采取用三爪卡盘夹一端(外圆),用顶尖顶一端(中心孔)的定位方式,如上述工艺过程的

6、

8、9序中所用的定位方式。

由于主轴轴线上有通孔,在钻通孔后(第10序)原中心孔就不存在了,为仍能够用中心孔定位,一般常用的方法是采用锥堵或锥套心轴,即在主轴的后端加工一个1:20锥度的工艺锥孔,在前端莫氏锥孔和后端工艺锥孔中配装带有中心孔的锥堵,如图4-2a所示,这样锥堵上的中心孔就可作为工件的中心孔使用了。使用时在工序之间不许卸换锥堵,因为锥堵的再次安装会引起定位误差。当主轴锥孔的锥度较大时,可用锥套心轴,如图4-2b所示。

100

图4-2 锥堵与锥套心轴

为了保证以支承轴颈为基准的前锥孔跳动公差(控制二者的同轴度),采用互为基准的原则选择精基准,即第

11、12序以外圆为基准定位车加工锥孔(配装锥堵),第16序以中心孔(通过锥堵)为基准定位粗磨外圆;第17序再一次以支承轴颈附近的外圆为基准定位磨前锥孔(配装锥堵),第

21、22序,再一次以中心孔(通过锥堵)为基准定位磨外圆和支承轴颈;最后在第23序又是以轴颈为基准定位磨前锥孔。这样在前锥孔与支承轴颈之间反复转换基准,加工对方表面,提高相互位置精度(同轴度)。

2.划分加工阶段

主轴的加工工艺过程可划分为三个阶段:调质前的工序为粗加工阶段;调质后至表面淬火前的工序为半精加工阶段;表面淬火后的工序为精加工阶段。表面淬火后首先磨锥孔,重新配装锥堵,以消除淬火变形对精基准的影响,通过精修基准,为精加工做好定位基准的准备。

3.热处理工序的安排

45钢经锻造后需要正火处理,以消除锻造产生的应力,改善切削性能。粗加工阶段完成后安排调质处理,一是可以提高材料的力学性能,二是作为表面淬火的预备热处理,为表面淬火准备了良好的金相组织,确保表面淬火的质量。对于主轴上的支承轴颈、莫氏锥孔、前短圆锥和端面,这些重要且在工作中经常摩擦的表面,为提高其耐磨性均需表面淬火处理,表面淬火安排在精加工前进行,以通过精加工去除淬火过程中产生的氧化皮,修正淬火变形。

4.安排加工顺序的几个问题 1) 深孔加工应安排在调质后进行

钻主轴上的通孔虽然属粗加工工序,但却宜安排在调质后进行。因为主轴经调质后径向变形大,如先加工深孔后调质处理,会使深孔变形,而得不到修正(除非增加工序),安排调质处理后

101 钻深孔,就避免了热处理变形对孔的形状的影响。

2) 外圆表面的加工顺序

对轴上的各阶梯外圆表面,应先加工大直径的外圆,后加工小直径外圆,避免加工初始就降低工件刚度。

3) 铣花键和键槽等次要表面的加工安排在精车外圆之后,否则在精车外圆时产生断续切削,影响车削精度,也易损坏刀具。主轴上的螺纹要求精度高,为保证与之配装的螺母的端面跳动公差,要求螺纹与螺母成对配车,加工后不许将螺母卸下,以避免弄混。所以车螺纹应安排在表面淬火后进行。

4) 数控车削加工

数控机床的柔性好,加工适应性强,适用于中、小批生产。本主轴加工虽然属于大批生产,但是为便于产品的更新换代,提高时生产效率,保证加工精度的稳定性,在主轴工艺过程中的第15序也可采用数控机床加工,在数控加工工序中,自动的车削各阶梯外圆并自动换刀切槽,采用工序集中方式加工,既提高了加工精度,又保证了生产的高效率。由于是自动化加工,排除了人为错误的干扰,确保加工质量的稳定性。取得了良好的经济效益。同时采用数控加工设备为生产的现代化提供了基础。在大批生产时,一些关键工序也可以采用数控机床加工。

§4.3 箱体类零件的加工工艺

箱体零件是机器或部件的基础零件,轴、轴承、齿轮等有关零件按规定的技术要求装配到箱体上,连接成部件或机器,使其按规定的要求工作,因此箱体零件的加工质量不仅影响机器的装配精度和运动精度,而且影响机器的工作精度、使用性能和寿命。下面以图4-3所示齿轮减速箱体零件的加工为例讨论箱体类零件的工艺过程。

§4.3.1 箱体类零件的结构特点和技术要求分析

图4-3所示零件为某车床主轴箱体类零件,属于中批生产,零件的材料为HT200铸铁。一般来说,箱体零件的结构较复杂,内部呈腔形,其加工表面主要是平面和孔。对箱体类零件的技术要求分析,应针对平面和孔的技术要求进行分析。

1.平面的精度要求

箱体零件的设计基准一般为平面,本箱体各孔系和平面的设计基准为G面、H面和P面,其中G面和H面还是箱体的装配基准,因此它有较高的平面度和较小表面粗糙度要求。

2.孔系的技术要求 箱体上有孔间距和同轴度要求的一系列孔,称为孔系。为保证箱体孔与轴承外圈配合及轴的回转精度,孔的尺寸精度为IT7,孔的几何形状误差控制在尺寸公差范围之内。为保证齿轮啮合精度,孔轴线间的尺寸精度、孔轴线间的平行度、同一轴线上各孔的同轴度误差和孔端面对轴线的垂直度误差,均应有较高的要求。

3.孔与平面间的位置精度

箱体上主要孔与箱体安装基面之间应规定平行度要求。本箱体零件主轴孔中心线对装配基面(G、H面)的平行度误差为0.04mm。

4.表面粗糙度

重要孔和主要表面的粗糙度会影响连接面的配合性质或

102 接触刚度,本箱体零件主要孔表面粗糙度为0.8μm,装配基面表面粗糙度为1.6μm。

§4.3.4 箱体类零件的加工工艺过程分析

一、主要表面的加工方法选择

箱体的主要加工表面有平面和轴承支承孔。

箱体平面的粗加工和半精加工主要采用刨削和铣削,也可采用车削。当生产批量较大时,可采用各种组合铣床对箱体各平面进行多刀、多面同时铣削;尺寸较大的箱体,也可在多轴龙门铣床上进行组合铣削,可有效提高箱体平面加工的生产率。箱体平面的

精加工,单件小批量生产时,除一些高精度的箱体仍需手工刮研外,一般多用精刨代替传统的手工刮研;当生产批量大而精度又较高时,多采用磨削。为提高生产效率和平面间的位置精度,可采用专用磨床进行组合磨削等。

箱体上公差等级为IT 7级精度的轴承支承孔,一般需要经过3~4次加工。可采用扩一粗铰一精铰,或采用粗镗-半精镗一精镗的工艺方案进行加工(若未铸出预孔应先钻孔)。以上两种工艺方案,表面粗糙度值可达Ra0.8~1.6μm。铰的方案用于加工直径较小的孔,镗的方案用于加工直径较大的孔。当孔的加工精度超过IT 6级,表面粗糙度值Ra小于0.4μm时,还应增加一道精密加工工序,常用的方法有精细镗、滚压、珩磨、浮动镗等。

二、箱体加工定位基准的选择

1.粗基准的选择

粗基准的选择对零件主要有两个方面影响,即影响零件上加工表面与不加工表面的位置和加工表面的余量分配。为了满足上述要求,一般宜选箱体的重要孔的毛坯孔作粗基准。本箱体零件就是宜主轴孔Ⅲ和距主轴孔较远的Ⅱ轴孔作为粗基准。本箱体不加工面中,内壁面与加工面(轴孔)间位置关系重要,因为箱体中的大齿轮与不加工内壁间隙很小,若是加工出的轴承孔与内壁有较大的位置误差,会使大齿轮与内壁相碰。从这一点出发,应选择内壁为粗基准,但是夹具的定位结构不易实现以内壁定位。由于铸造时内壁和轴孔是同一个型心浇铸的,以轴孔为粗基准可同时满足上述两方的要求,因此实际生产中,一般以轴孔为粗基准。

2.精基准的选择

选择精基准主要是应能保证加工精度,所以一般优先考虑基准重合原则和基准同一原则,本零件的各孔系和平面的设计基准和装配基准为为G、H面和P盖,因此可采用G、H面和P三面作精基准定位。

三、箱体加工顺序的安排

箱体机械加工顺序的安排一般应遵循以下原则: 1.先面后孔的原则

箱体加工顺序的一般规律是先加工平面,后加工孔。先加工平面,可以为孔加工提供可靠的定位基准,再以平面为精基准定位加工孔。平面的面积大,以平面定位加工孔的夹具结构简单、可靠,反之则夹具结构复杂、定位也不可靠。由于箱体上的孔分布在平面上,先加工平面可

103 以去除铸件毛坯表面的凹凸不平、夹砂等缺陷,对孔加工有利,如可减小钻头的歪斜、防止刀具崩刃,同时对刀调整也方便。

2.先主后次的原则

箱体上用于紧固的螺孔、小孔等可视为次要表面,因为这些次要孔往往需要依据主要表面(轴孔)定位,所以这些螺孔的加工应在轴孔加工后进行。对于次要孔与主要孔相交的孔系,必须先完成主要孔的精加工,再加工次要孔,否则会使主要孔的精加工产生断续切削、振动,影响主要孔的加工质量。

3. 孔系的数控加工

由于箱体零件具有加工表面多,加工的孔系的精度高,加工量大的特点,生产中常使用高效自动化的加工方法。过去在大批、大量生产中,主要采用组合机床和加工自动线,现在数控加工技术,如加工中心、柔性制造系统等已逐步应用于各种不同的批量的生产中。车床主轴箱体的孔系也可选择在卧式加工中心上加工,加工中心的自动换刀系统,使得一次装夹可完成钻、扩、铰、镗、铣、攻螺纹等加工,减少了装夹次数,实行工序集中的原则,提高了生产率。

104 图4-3 某车床主轴箱体简图

105

§4.4 拨动杆零件机械加工工艺规程 §4.4.1 零件的工艺分析

图4-4所示零件是某机床变速箱体中操纵机构上的拨动杆,用作把转动变为拨动,实现操纵机构的变速功能。本零件生产类型为中批生产。下面对该零件进行精度分析。对于形状和尺寸(包括形状公差、位置公差)较复杂的零件,一般采取化整体为部分的分析方法,即把一个零件看作由若干组表面及相应的若干组尺寸组成的,然后分别分析每组表面的结构及其尺寸、精度要求,最后再分析这几组表面之间的位置关系。由图4-4零件图样中可以看出,该零件上有三组加工表面,这三组加工表面之间有相互位置要求,具体分析如下:

三组加工表面中每组的技术要求是:

1.以尺寸φ16H7mm为主的加工表面,包括φ25h8mm外圆、端面,及与之相距74±0.3mm的孔φ10H7mm。其中φ16H7mm孔中心与φ10H7mm孔中心的连线,是确定其它各表面方位的设计基准,以下简称为两孔中心连线。

2.粗糙度Ra6.3μm平面M,以及平面M上的角度为130°的槽。 3.P、Q两平面,及相应的2-M8mm螺纹孔。 对这三组加工表面之间主要的相互位置要求是:

第⑴组和第⑵组为零件上的主要表面。第⑴组加工表面垂直于第⑵组加工表面,平面M是设计基准。第⑵组面上的槽的位置度公差φ0.5mm,即槽的位置(槽的中心线)与B面轴线垂直且相交,偏离误差不大于φ0.5mm。槽的方向与两孔中心连线的夹角为22°47’±15’。第⑶组及其它螺孔为次要表面。第⑶组上的P、Q两平面与第⑴组的M面垂直,P面上螺孔M8mm的轴线与两孔中心连线的夹角45°。Q面上的螺孔M8mm的轴线与两孔中心连线平行。而平面P、Q位置分别与M8的轴线垂直,P、Q位置也就确定了。

§4.4.2毛坯的选择

此拨动杆形状复杂,其材料为铸铁,因此选用铸件毛坯。 §4.4.3定位基准的选择

1.精基准的选择

选择基准思路的顺序是,首先考虑以什么表面为精基准定位加工工件的主要表面,然后考虑以什么面为粗基准定位加工出精基准表面,即先确定精基准,然后选出粗基准。由零件的工艺分析可以知道,此零件的设计基准是M平面和φ16mm和φ10mm两孔中心的连线,根据基准重合原则,应选设计基准为精基准,即以M平面和两孔为精基准。由于多数工序的定位基准都是一面两孔,也符合基准同一原则。

2.粗基准的选择

根据粗基准选择应合理分配加工余量的原则,应选φ25mm外圆的毛坯面为粗基准(限制四个自由度),以保证其加工余量均匀;选平面N为粗基准(限制一个自由度),以保证其有足够的余量;根据要保证零件上加工表面与不加工表面相互位置的原则,应选R14mm圆弧面为粗基准

106 (限制一个自由度),以保证φ10mm孔轴线在R14mm圆心上,使R14mm处壁厚均匀。

§4.4.4工艺路线的拟定

1.各表面加工方法的选择

根据典型表面加工路线,M平面的粗糙度Ra6.3μm,采用面铣刀铣削;130°槽采用“粗刨-精刨”加工;平面P、Q用三面刃铣刀铣削;孔φ16H7mm、φ10H7mm可采用“钻-扩-铰”加工;φ25mm外圆采用“粗车-半精车-精车”,N面也采用车端面的方法加工;螺孔采用“钻底孔-攻丝加工”。

2.加工顺序的确定

虽然零件某些表面需要粗加工、半精加工、精加工,由于零件的刚度较好,不必划分加工阶段。根据基准先行、先面后孔的原则,以及先加工主要表面(M平面与φ25mm外圆和φ16mm孔 ),后加工次要表面(P、Q平面和各螺孔)的原则,安排机械加工路线如下所示:

①以N面和φ25mm毛坯面为粗基准,铣M平面。 ②以M平面定位,同时按φ25mm毛坯外圆面找正,“粗车-半精车-精车”φ25mm外圆到设计尺寸,“钻-扩-铰”φ16mm孔到设计尺寸,车端平面N到设计尺寸。

③以M面(三个自由度)、φ16mm(两个自由度)和R14mm(一个自由度)为定位基准,“钻-扩-铰”φ10mm孔到设计尺寸。

④以N平面和φ16mm、φ10mm两孔为基准,“粗刨-精刨”130°槽。 ⑤铣P、Q平面。(一面两孔定位)。

⑥“钻-攻丝”加工螺孔。(一面两孔定位 107

108

第13篇:机械加工工艺过程卡、工序卡区别

机械加工工艺过程卡片、工艺卡、工序卡的区别

1、机械加工工艺过程卡(工艺路线卡)

它规定整个生产过程中,产品(或零件)所要经过的车间、工序

等总的加工路线及所有使用的设备和工艺装备。可以作为工序卡片的汇总文件。

2、工艺卡:

是针对某一工艺阶段编制的一种加工路线工艺,它规定了零件在这一阶段的各道工序,以及使用的设备、工装和加工规范。如锻压工艺卡、电镀工艺卡等。

3、工序卡:

是规定某一工序内具体加工要求的文件。除工艺守则已作出规定的之外,一切与工序有关的工艺内容都集中在工序卡片上。如机加工工序卡、装配工序卡、操作指导卡等。

第14篇:如何编制合理的机械加工工艺

如何编制合理的机械加工工艺

[摘 要]机械加工是生产零部件的过程, 是一个系统化的工程,所以在机械加工过程中需要事先设计零件的整个加工流程,并对工艺编制成文,这一过程中涉及到很多的工序和加工方法。科学的规程设计和实施是保证零件合格率、生产效率的重要前提,机械加工工艺编制过程中我们要遵照要点,按步骤进行这样才能使工艺流程科学化、高效化。

[关键词]编制准备 工艺要求 编制分步要点

中图分类号:G642.3 文献标识码:A 文章编号:1009-914X(2017)16-0282-01

1 编制产品机械加工工艺的准备工作

1.1 事先熟悉图纸,了解零件的整体要求。在编制工艺之前要做到了解图纸,这一步不仅仅是对某一张单一的零件图的了解,我们知道任何零件它将会成为是某一个部件或者某台机器设备的一个特有部分,这就要求在看图纸的时候要明确;① 该部件或该机器中它将承担怎样的作用,这个需求需要达到的机械制造精度又是什么;② 通过图纸明确那一部分是该零件加工的难点,需要特别注意;③初步了解该零件加工的流程和需要的加工方法,在头脑中预先“加工”一次,并列出大体步骤。只有这样在看图纸的时候才是真正了解了图纸。

1.2 熟悉机械加工方法。零件的加工是一个多工种、多工序的过程,需要制造的零件不是靠单一的加工方式就能加工出来,它将会涉及多方面的机械加工。比如:车、铣、刨、拉、磨(研、珩)、钳、镗、线切割、放电、挤压、铸造以及热处理等等。作为工艺的编制者,首先应是一个“多面手”,必须熟知所有加工方法在零部件生产中所起的作用,甚至是对零部件硬度、精度等物理性质的影响,这样才能合理的进行工艺编制。所以在工艺编制前要熟知所有在加工中涉及到的加工方法,这是工艺编制的又一个关键准备。

1.3 了解工厂的生产条件和工人的基本能力。工艺编制不是纸上谈兵,工艺编制所制定的加工流程,是最终是要在工厂加工中实施的具体操作流程和规定,所以在任何一个工艺编制中都不能缺少对工厂和工人的了解。比如:工厂没有该设备,或者有设备却没有操作的技术工人,导致这工艺没办法做到,这样的工艺编制是没有意义的。所以工艺编制要从工厂的加工水平,工人的实际操作能力出发才具有可操作性和指导性。

1.4 在工艺编制中也要明确工艺的分散和集中。在工艺编制的过程中还有考虑生产的高效性,始终要把降低生产成本考虑在内。所以批量产品时,我们通常可以采用工序分散制,相反,单件生产时通常采用工序集中制。不过这种方法也不是定律,有时候,我们的批量产品也有某部分工序是集中的。也就是说,需要根据加工零件的具体要求和工厂的实际情况,合理搭配,有机结合才能达到提高效率的要求。

2 编制产品机械加工工艺的总体要求

①机械加工工艺应选用先进的,切实可行的工艺方法,对无成熟经验的新工艺、新技术要慎重对待,应事先经工艺试验或技术论证,确认其成熟性后可纳入工艺文件。② 机械加工工艺应按统一的技术术语、工艺常用语和固定的格式进行编制,内容、文字要简洁易懂。③ 编制加工工艺时,要根据零件结构特点,毛坯状况,制造批量,外形尺寸,零件重量及有关粗精加工机床划分等条件,合理选择机床。④ 编制加工工艺需用工装时,首先考虑采用标准工装及现有专用工装,尽量减少新设计专用工装。对批量大的零件应设计专用工装,以提高生产效率。⑤ 对于大型零件(特别是铸锻件)编制工艺时,估算零件毛坯重量,若接近工厂现有起重设备或机床额定负荷时,应实际检查零件的具体重量,提前做好准备,确保生产安全。

3 编制机械加工工艺工作应做到以下几点

(1)编制零件的工艺时,工序必须齐全。零件从毛坯到成品的全过程都必须排列工序,包括加工、钳工、发兰、探伤和外协加工等。① 原材料和铆焊下料的零件,在加工前需进行热处理的,首道工序应写作“热”。铸、锻毛坯及焊接件在加工前的热处理不再排工序。② 零件在加工中或加工后需要热处理的必须排工序,并写明热处理种类。③ 零件加工完成后,需要与其他零件焊接时,零件的最后工序名称为“焊”。

(2)对于装夹和工艺步骤较多的复杂工序,应按“装夹”和“工序”的先后次序编写,并写明装夹中找正的方法和找正的精度要求。

(3)零件在不同序中的加工部位、完成程度要做明确的定量规定。同一加工部位需经两道或两道以上工序加工时,应写明工序间的具体余量,允许的偏差值,并写明表面粗糙度要求。

(4)对于一些在“工艺守则”中有规定,仍需要规定具体数值的部分,在加工工艺中应明确规定其具体要求内容。

(5)加工中必须使用的基准,在工艺上应预明确,上一道工序应为下一道工序准备好必要的基准。为使基准明显准确,如有必要可在基准面加刻标记。为了作为基准的需要,对一些加工表面可在原设计要求的基础上,提高精度及表面粗糙度值,并在工艺上阐明其用途。

(6)对于结构较复杂,视图较多的加工件,为使工艺中涉及的加工表面易于工人查找,应注明该表面所在视图名称或编号,并指出该表面在视图中的位置。

(7)对毛坯形式、夹头或余量提出了特殊要求应在工艺内容中说明。例如:“某端加长××mm”、“某处增大余量××mm”、“圆整”、“半圆”、“空心”、“实心”等内容。

(8)为下道工序保留的夹头,在该工序涉及的内容中必须写。

(9)对于选定的工艺方法,对应用中不可避免的一些较为复杂的计算(如尺寸链计算,挂轮计算,三角形孔系镗孔坐标计算等),在编制工艺中应给出准确计算结果,若不能直接计算出结果时,应给出必要的计算公式,方便计算。

(10)对于易变形的零件,加工过程中时间放置冷却时,可安排“时效”工序,并注明停放时间。

(11)与相关件焊合、把合,同加工或配做时,必须写出相关件的件号及名称,其中的一件(基础件)应列出全部工序及工序内容,而对另一件仅列出工序名称,工序内容中写上“详见×××(基础件件号及名称)工艺。

(12)加工工序中使用工装时,应在该工序的工装栏内填写工装编号、名称及规格。几个工序需用同一工装时,这些工序的工装栏内应写上工装编号、名称及规格。对于工艺中所用较为复杂或特殊的工装,应在工艺中写明使用要领。

(13)根据产品零件图样要求或零件的重要程度,在加工工艺中安排一次或几次探伤工序。一次探伤(超声波探伤)者安排在粗加工后热处理前,两次探伤(超声波探伤)者,第二次安排在热处理半精加工后,?Q粉探伤一般安排在主要加工面的最终工序。

4 总结

加工工艺编制是一项系统工作,事先应作好准备工作,在编制过程中应用实际操作者的身份考虑工艺的每一个操作方法和过程。这样才能是工艺编制符合实际的操作要求。另外,在编制过程中一定要考虑加工过程的效率提高,在保证质量的前提下提高工作效率才能使工艺编制更有实际意义。

参考文献:

[1] 赵智勇、王丽杰,编制机械加工工艺规程应考虑的几个问题[J].农机使用与维修,2002(4).

[2] 阿布别克?乌拉孜,试述机械加工工艺规程[J].新疆有色金属,2006(2).

[3] 徐海枝,机械加工工?编制[M].北京理工大学出版社,2009.

第15篇:机械加工工艺规程重要性和制订

机械加工工艺规程

本文主要阐述机械加工工艺规程的重要性及制订。

所谓工艺规程,是指导生产的重要技术文件。是在给定的生产条件下,在总结实际生产经验和科学分析的基础上,由多个加工工艺方案优选而制定的。因此,工艺规程是指导生产的重要技术文件,实际生产必须按照工艺规程规定的加工方法和加工顺序进行,只有这样才能实现优质、高产、低成本和安全生产。

一、机械加工工艺规程的重要性

工艺规程是组织生产、安排管理工作的重要依据

在新产品投产之前,首先要按照工艺规程进行大量的有关生产的准备工作;结合我司情况,一般是由生产部门主管按照工艺规程确定各个零件的投料时间和数量,由生产组长调整设备负荷,供应动力能源,调配劳动力等。每步操作都必须按照工艺规程规定的工序、工步以及所用设备、工时定额等有节奏的进行生产。总之,制订定额、计算成本、生产计划、劳动工资、成本核算等企业管理工作都必须以工艺规程为依据,才能保证各部门、车间的工作紧密配合。均衡的完成生产任务。

如果没有好的工艺规程,就像打仗没有制订有效的计划,必败无疑。会造成多种不良后果,会导致材料浪费,生产计划安排不当,人员调配不准确,生产节奏紊乱等。 工艺规程是设计新工厂的依据

在设计新工厂时,必须根据工艺规程的有关规定,确定所需加工设备的品种、数量;车间布局、面积;生产工人的工种、等级和数量等。以此,合理经济的工艺规程尤为重要,会为公司节省不少的不必要的开支。

工艺规程有助于技术交流和推广先进经验

正确合理又经济的工艺规程是在一定的技术水平及具体的生产条件下制定的,是相对的,是由时间、地点和条件决定的。工艺规程必须按照公司的生产加工能力进行设计制订。因此,虽然在生产中必须遵守工艺规程,但工艺规程也要随着生产的发展和技术的进步不断改进,生产中如果出现了新问题,就要制订新的工艺规程作为依据,组织生产。要及时修订不合理的工艺规程,提高生产效率。但是,在修改工艺规程时,必须采取慎重和稳妥的步骤,即在一定的时间内既要保证既定的工艺规程具有一定的稳定性,可靠性和可实施性,又要力求避免贸然行事,决不能轻率地修改工艺规程,以致影响生产的正常秩序。

二、机械加工工艺规程的制订 1.制订工艺规程的原则

制订工艺规程的原则是,在一定的生产条件下,应以最少的劳动量和最低的成本,在规定的期间内,可靠地加工出符合图样及技术要求的零件。在制订工艺规程时,应注意以下问题: 技术上的先进性 在制订工艺规程时,要了解当时国内国外本行业工艺技术的发展水平,通过必要的工艺试验,积极采用适合的先进工艺和工艺装备。充分利用设备的加工能力,达到生产效益最大化。 经济上的合理性

在一定的生产条件下,可能会出现几种能保证零件技术要求的工艺方案,此时应通过核算或相互对比,选择经济上最合理的方案,使产品的能源、原材料消耗和成本最低,并保证产品质量和性能。

具有良好的劳动条件 在制订工艺规程时,要注意保证工人在操作时具有良好且安全的劳动条件,因此在工艺方案上要注意采取机械化或自动化的措施,将工人从某些笨重繁杂的体力劳动中解放出来。根据我司工艺规程的设计,普通车床西现已逐步被加工中心取代,效益更改,准确性更好。因此,旧的工艺规程已无法实现生产要求,必须重新设计制订。 2.制订工艺规程所需的原始材料 产品的全套装配图和零件工作图; 产品验收的质量标准; 产品的生产纲领(年产量); 毛坯资料;

现场的生产条件(包括设备、人员条件等); 国内外工艺技术发展情况; 相关的工艺手册及图册。 3.制订工艺规程的步骤

1)计算年生产纲领,确定生产类型 2)零件的工艺分析 分析和审查零件图纸

通过分析产品零件图及有关的装配图,了解零件在机械中的功用。在此基础上进一步审查图纸的完整性和正确性。例如,图纸是否符合有关标准,是否有足够的视图,尺寸,公差和技术要求的标注是否齐全等。若有遗漏或错误,应及时提出修改意见,并与有关设计人员协商,按一定的手续进行修改或补充。 审查零件材料的选择是否恰当 零件材料的选择应立足于国内,尽量采用我国资源丰富的材料,不能随便采用贵金属。此外,如果材料选的不合理,可能会使整个工艺过程的安排发生问题。 分析零件的技术要求 加工表面的尺寸精度; 加工表面的几何形状精度;

各加工表面之间的相互位置精度;

加工表面粗糙度以及表面质量方面的其他要求; 热处理要求及其他要求; 审查零件结构工艺性

在保证使用要求的前提下,是否能以较高的生产效率和最低的成本方便制造出来的特性。使用性能完全相同而结构不同的两个零件,他们的制造方法和制造成本可能有很大的差别。 结构工艺性涉及的方面较多,包括毛坯制造的工艺性(如铸造工艺性、热处理工艺性和焊接工艺性等)、机械加工的工艺性、热处理工艺性、装配工艺性和维修工艺性等。以下是机械加工中的零件结构工艺性问题: 零件的结构应便于安装;

被加工面应尽量处于同一平面上; 被加工面的结构刚性要好;

孔的位置应便于刀具接近加工表面;

台阶轴的圆角半径、沉割槽和键槽的宽度以及圆锥面的锥度应尽量同一 磨削、车削螺纹都需要设置退刀槽;

应尽量减少加工面的面积和避免深孔加工,以保证加工精度和提高生产率。 3)毛坯的选择 确定毛坯的种类 确定毛坯的形状

是否需要制出工艺凸台以有利于工件的装夹; 是一个零件制成一个毛坯还是多个零件合制成一个毛坯。 哪些表面不要求制出;

铸件分型面、拔模斜度及铸造圆角;锻件辅料、分磨面、模锻斜度及圆角半径等。 绘制毛坯--零件综合图 拟定工艺路线

即定出由粗到精的全部加工过程,包括选择定位基准及各表面的加工方法、安排加工顺序等,还包括确定工序分散与集中的程度、安排热处理以及检验等辅助工序。这是关键性的一步,要多提出几个方案进行分析比较。

确定各工序的加工余量、计算工序尺寸及公差;

确定各工序的设备、夹具、刀具、量具和辅助工具; 确定切削用量和工时定额;

确定各主要工序的技术要求及检验方法;

填写工艺文件(工艺过程卡片和工序卡片两种形式)。

第16篇:机械加工

机械加工实习报告

响应学校的号召我最近去参观实习的是其下的一家发动机厂。在厂内一名同事带我到了这次参观的很多的东西但我印象最深的是发动机的第二大主要部件就是连杆了,连杆的作用是实现运动转换,能量传递,所用的材料以中碳钢和中碳铬钢。因为连杆在工作中主要要承受三种动载荷:1.汽缸内的燃烧压力;2.活塞连杆组的往复运动惯性力;3.连杆告诉摆动时产生的横向惯性力,所以为了保证其不会发生断裂,其结构不仅要重量轻,刚度大,而且有足够的疲劳强度和冲击韧性。连杆的结构主要由活塞销孔端、曲柄销孔端和杆身组成。

连杆的加工工序:1.用平面磨床粗磨两平面,2.用立式钻床钻小头孔,6.用切断铣床切断,9.用坦克拉拉连杆两侧面、结合面、半圆面,10.用双头立轴圆台平面磨粗磨结合面,11.螺栓孔加工,20.用组合机床钻、扩、铰螺栓孔,28.用双头立轴圆台平面磨床精磨两平面,29.用金刚镗床粗镗大空,32.挤压衬套,

35.精磨两端,36.用双面卧式金刚镗床精镗大端孔及小端铜套孔,38.用珩磨珩磨大端孔,40.终检,41.大、小头孔返修。

在这次观看学习中,通过对实际生产过程的接触,了解从金属材料开始,制成毛坯、零件,直至组装机的整个现代机械制造工艺过程。培养了我们对一个现代的、系统的、具体的机械制造的过程的概念。我们经过对生产问题的调查、学习和探讨,进一步掌握必要的生产技术,促进了我们课堂所学到的理论知识和实践能力相结合,提高了我们分析与解决实际生产问题的能力。为营销汽车方面积累了大量宝贵的资料和经验。同时也启迪了我们的思维、培养了我们的创新意识。

第17篇:连杆的机械加工工艺及工装设计

网络教育学院

本 科 生 毕 业 论 文(设 计)

目: 连杆的机械加工工艺及工装设计

学习中心:

层 次: 专科起点本科

专 业:

年 级: 年 春/秋 季

学 号:

学 生:

指导教师:

完成日期: 年 月 日

连杆的机械加工工艺及工装设计

内容摘要

在机械制造批量生产中根据加工零件的工艺要求,就需要使用不同的加工方式。本文所要讲的连杆,其在柴油机的传动系统中颇为重要,由于连杆在柴油机中所占的重要地位,其加工的要求也较为精细,就例如在连杆加工中的形状精度以及尺寸精度的要求就很高。连杆在加工过程中,由于其自身的刚度条件较差,故而就可能在加工中产生变形,使零件作废,所以就需要在连杆的加工中将表面的粗加工及精加工分步而行,减小零件变形的可能性。零件加工技术要求的达成不仅仅需要在零件的加工中避免边形,还需要在加工中逐步的去达成加工要求,从而制造出精细标准的连杆零件。

连杆作为汽车发动机中的主要零件,其在柴油机中的作用就是将作用于柴油机活塞头部的力传递给柴油机的曲轴,再通过曲轴所作用的力带动活塞挤压活塞腔内的柴油气,从而不断的重复运动,带来源源不断的动力。而发动机所带来的动力是人们所不可缺少的,所以说,连杆零件在机械制造行业中占有十分重要的地位。

关键词:连杆;加工工艺;工装设计

I

连杆的机械加工工艺及工装设计

目 录

内容摘要 ........................................................................................................I 引 言 .........................................................................................................1 1 绪论 .........................................................................................................2 2 工艺规程设计 .........................................................................................3 2.1年生产量和批量的确定 ....................................................................................3 2.2零件分析 ............................................................................................................3 2.3 定位基准的分析与选择 .................................................................................4 2.3.1 基准的概念 ..............................................................................................................4 2.3.2 基准选择原则 ..........................................................................................................4 2.3.3 定位基准的选择 ......................................................................................................4 2.4 工艺路线的制定 .............................................................................................4 2.5 工艺卡的填写 ...............................................................错误!未定义书签。

3 夹具设计 .................................................................................................6 3.1 定位基准的选择 ...............................................................................................7 3.2定位元件选择 ....................................................................................................7 3.3 夹紧元件的选择 ...............................................................................................8 3.4夹紧力的计算 ....................................................................................................8 结语 .............................................................................................................10 参考文献 ......................................................................................................11

II

连杆的机械加工工艺及工装设计

引 言

连杆的组成有连杆体、连杆盖、螺栓以及螺母等零件,作为柴油机的重要零件之一,其形状参数以及尺寸参数都对柴油机的重量及形状尺寸结构等存在着很大的影响。故而,在连杆设计定型后的加工中需要去选择适合的加工工艺及工装设计,从而保证连杆零件的生产质量及效果。连杆在诸多发达国家的生产质量都很高,相对于国内的诸多产品来说非常的领先,除了设备问题及设计问题外大都是由于加工工艺及工装设计间的差距所造成的。本课题就通过对连杆这个零件的研究与了解,对其工艺规程进行了设计,并对夹具也进行了配套设计,从而使得所制造的连杆质量能够更上一层楼。

连杆的机械加工工艺及工装设计

1 绪论

本次设计主要研究的是连杆工艺以及钻孔夹具。在组合机床的设计中,夹具的设计是其中最为主要的一个部分,而夹具的设计是否合理,是被加工零件精度参数的最直接影响因素。此次设计中,主要针对以往手夹具动夹紧时的夹紧力不同、精度系数低、劳动强度大、误差大等不足进行改进,设计了气动夹紧的夹具,整体思路就是以加工端面作为工件的定位基准,以夹具的大断面孔和凸台作为定位面,以空气作为运行的动力源,具有环保、清洁、干净等优点。

具体设计思路:第一先确定已加工端面的定位方法,然后通过夹具的内孔、凸台,使用设计的气动夹具夹紧,这样可以使六个连杆的活动全部受到限制,从而夹紧零件,然后就可以确定零件的夹紧方法。

连杆的机械加工工艺及工装设计

2 工艺规程设计

2.1年生产量和批量的确定

1)已知生产纲领:2000件/年,

年生产量=生产纲领  每台件数  (1+1%储备量)(1+1%废品率)

=20001(单缸柴油机)1.011.01 =2040件

月产量=年产量/12=170件

日产量=月产量/25.5=6.667 =7件

2)生产类型的确定:

查工艺人员手册,年产量2000件的属于中批生产。 3)批量的确定及生产间隔期

在一个零件总的加工时间及最长工序时间确定的情况下,批量和生产间隔期相互制约,批量越大,生产间隔期越长,生产率高,但资金周转慢,批量越小,生产间隔期短,资金周转快,但生产率低,所以要同时兼顾二者。

批量的确定:

除了要考虑生产间隔期外,还要考虑车间毛坯仓库的面积,如批量大,则占用车间面积过大,资金投入大,周转慢,反之,如批量小,则毛坯的供给满足不了加工需要,则出现停工,以至于设备的闲置,工人的浪费。

考虑到以上的种种因素,定的批量时间为2天。

2.2零件分析

1. 零件作用:本零件作为柴油机活塞连杆用。 2. 零件材料:本零件材料为HT200。

3. 零件热处理要求:由于本零件为铸件,需要进行时效处理。 4. 零件技术要求:

本零件需加工的表面为:两端面、大头凸块两侧面、体与盖的结合面、螺栓定位孔面,其中两端面及结合面本身尺寸精度、表面粗糙度有较高要求,而且位置精度也有一定要求。(详细见工件零件图) 5. 零件结构特点:由连杆大头、小头及连杆组成。

6. 加工出该工件所用的加工方法主要有:平面加工及孔加工。 7. 零件设计基准:分析得知,其设计基准是大头孔。

连杆的机械加工工艺及工装设计

2.3 定位基准的分析与选择

8. 在制定零件加工工艺规程时,正确选择定位基准对保证加工表面的尺寸精度和相互位置精度的要求以及合理安排加工顺序都有重要的影响。 2.3.1 基准的概念

基准是机械制造中应用十分广泛的一个概念,机械产品从设计时零件尺寸的标注,制造时工件的定位,校验时尺寸的测量,一直到装配时零部件的的装配位置确定等,都要用到基准的概念。基准就是用来确定生产对象上几何关系所依据的点,线或面。 2.3.2 基准选择原则

在加工起始工序中。只能用毛坯上未曾加工过的表面作为定位基准,则该表面称为粗基准。利用已加工过的表面作为定位基准,则称为精基准。 2.3.3 定位基准的选择

在连杆的加工中,主要定位基准的选择是在小孔进行精铣之后选择小孔以及一个基面作为主要的定位基准,并用大头处指定一侧外表面为另一定位基面。

2.4 工艺路线的制定

(1) 两端面的加工

(2) 身盖分开面加工

(3) 小头孔加工

(4) 大头孔加工

其中工艺过程设计大致采用:锻造→调制→粗加工→检验→入库

在生产纲领已经确定为大量生产的条件下,可以考虑采用通用机床配以专用夹具,并尽量使工序集中来提高生产率。除此以外,还应当考虑经济效果,以便使生产成本尽量下降。

2.5 切削用量的确定

正确的对切削用量进行选择,不仅仅能够提高切削效率,还能够保证必要的刀具耐用度和经济性,同时保证加工质量,具有相当重要的作用。

(1)切削深度的选择,在进行加工时的切削深度应根据加工的粗精留下的余量确定。通常希望加工余量不要留得太大,否则,当吃刀深度较大时,切削力增加较为显著,从而就影响加工质量。

(2)进给量的选择,在进行加工时限制进给量提高的主要因素就是表面粗糙度。在进给量增大时,虽有利于断屑,但残留面积的高度会增大,从而导致切削

连杆的机械加工工艺及工装设计

力上升,表面质量下降。

(3)切削速度的选择,切削速度提高时,切削变形减小,切削力有所下降,而且不会产生积屑瘤和鳞刺。一般选用切削性能高的刀具材料和合理的几何参数,尽可能提高切削速度。只有当切削速度受到工艺条件限制而不能提高时,才选用低速,以避开积屑瘤产生的范围。

连杆的机械加工工艺及工装设计

3 夹具设计

夹具是根据机床的工艺和结构方案的具体要求而专门设计的,它是用于实现被加工零件的准确定位、夹压、刀具的导向,以及装卸工件时的限位等作用的。

组合机床的工作常常是多刀、多面和多工序同时加工,会产生很大的切削力和振动,因此组合机床佳句必须具有很好的刚性和足够的夹压力,以保证在整个加工过程中工件不产生任何位移。同时,也不应该对工件产生不容许的变形,组合机床的夹具是保证加工精度(尺寸精度、几何精度和位置精度等)的关键部件,其设计、制造和调整都必须有严格的要求,使其能持久的保持精度。此外,组合机床夹具应便于实现定位和夹压的自动化,并有动作完成的检查信号,保证切屑从加工空间自动排出,便于观察和检查,以及再不从机床上拆除夹具的情况下,能够更换易损件和维护调整。

在组合机床上加工时,必须使被加工零件对刀具及其导向保持正确的相对位置。这是靠夹具的定位支承系统来实现的,定位支承系统除用以确定被加工零件的位置外,还要承受被加工零件的重量和夹紧力,有时还需承受切削力。

定位支承系统主要由定位支承、辅助支承和一些限位元件组成,定位支承是指在加工过程中维持被加工零件的一定位置的元件。辅助支承是仅用作增加被加工零件在加工过程中的刚度及稳定性的一种活动式支承元件。

由于支承元件直接与被加工零件相接触,因此其尺寸、结构、精度和布置都直接影响被加工零件的精度,其设计应注意以下问题:

(1) 合理布置定位支承元件,力求使其组成较大的定位支承平面,最好使夹紧力的位置对准定位支承元件,当受工件结构限制不能实现时,也应使定位支承元件尽量接近压紧力的作用线,并应使夹压力的各力中心处于定位支承平面内。

(2) 提高刚度,减小定位支承系统的变形,应力求使定位元件(定位销)不受力。

(3) 提高定位支承系统的精度及其元件的耐磨性,一边长期保持夹具的定位精度。

可靠的排出定位支承部件的切屑,使切屑不堵塞和粘附在支承定位系统上,对保证定位的准确性和工作可靠性有很大的影响。因此设计时应尽可能不使切屑落到定位支承系统上,当切屑有可能落在其上,必须采取有效的排屑和清理措施。

夹具体的设计:

夹具体是夹具的最大和最复杂的元件,而且也是承受符合最大的元件。在它上

连杆的机械加工工艺及工装设计

面安装定位元件、夹紧元件,对刀元件和导向元件,及其它的一切元件和机构并通过它将夹具安装在机床上。工件的加工精度与夹具体本身的精度有很大关系,而且在加工过程中产生的切削力,惯性力等及工件的自重作用在夹具体上,都可能影响工件的加工精度。因此,设计夹具体应考虑以下问题:

1) 有适当的精度和尺寸稳定性,特别是位置精度直接影响工件在加工过程中产生的误差。

2) 夹具体要有足够的强度和刚度,使夹具体能承受在加工过程中产生的作用力而不止变形和发生振动。

3) 夹具体的机构要紧凑形状要简单,同时要有足够的空间位置,保证夹具的其它元件和机构安装方便,更换易损元件容易以及装卸工件方便。

4) 夹具体的结构工艺性要好以便于制造,并注意消除内应力避免变形。 5) 夹具体的中心要低,安装在机床上能稳固和安全,为了安装后得到稳定,底面的中部一般都挖空,同时应根据机床连接部分的机构形状来确定夹具体连接部分的形状和结构。

6) 在满足刚度和强度的前提下,夹具体应尽量轻,不重要的部位,可以挖空以减轻重量,便于装卸。

7) 夹具体采用铸造件,由于铸造可得到各种复杂的外形,刚性好还能吸振,但需进行时效处理以消除内应力。

3.1 定位基准的选择

第一道工序,采用毛坯端面基准。由毛坯零件图可知,通过两孔四点定位,再加上下部两点定位,能够将毛坯稳稳固定在机床上,不会产生位移,符合六点定位原理。

3.2定位元件选择

定位元件的选择有4条原则: (1) 定位元件要有较高的精度; (2) 定位元件要有较高的耐磨性; (3) 定位元件要有足够的刚度和硬度; (4) 定位元件要有良好的工艺性。

对于本工序而言,定位销可设计为固定销,这样定位方便稳定,装置不复杂,直接将定位销打入孔中即可,当定位销时间长了有磨损时,可以直接换掉即可。

连杆的机械加工工艺及工装设计

3.3 夹紧元件的选择

选择夹紧元件主要有3条原则:

1)夹紧元件结构要简单,制造要容易,体积小,重量轻,并且要有足够的强度;

2)夹紧动作迅速,操作方便,使用安全,有足够的夹紧行程和装卸工作的空间;

3)夹紧力要适当。

对于本道工序而言,夹紧力要求不大,而定位面的面积比较大,为了保证夹紧可靠,夹紧机构采用了螺纹夹紧机构,此套机构是利用螺纹直接夹紧工件,结构紧凑,所占空间位置较小,便于装卸工件。

3.4夹紧力的计算

对于加工顶面,夹紧力向下的分力与切削力垂直,夹紧力的向里的分力与定位元件给的支持力抵消。计算加紧力时,通常将夹具和工件看成是一个刚性系统,根据工件受切削力、夹紧力(大型工件还应考虑工件重力,运动的工件还应考虑惯性力等)的作用情况,找出在加工过程中对夹紧最不利的瞬时状态,按静力平衡原理计算出理论夹紧力。最后为保证夹紧可靠,再乘以安全系数作为实际所需夹紧力的数值。

Wk=WK 式中

Wk——实际所需夹紧力

W——在一定条件下,由静力平衡计算出的理论夹紧力(N)

K——安全系数 安全系数K可按下式计算:

K=K0K1K2K3K4K5K6=2.84 K0——考虑工件材料及加工余量均匀性的基本安全系数,取1.4 K1——加工性质,取1.2 K2——刀具钝化程度,取1.3 K3——切削特点,取1.0

K4——夹紧力的稳定性,取1.3 K5——手动夹紧时的手柄位置,取1.0 K6——仅有力矩使工件回转时工件与支承面接触的情况,取1.0 切削力:

连杆的机械加工工艺及工装设计

F=419·D·f0.8·Kp

=90526 N 切削扭矩:

M=0.21·D2·f0.8·Kp

=5194.136N·M 由夹紧力公式:

W=QL/rztgφ1+rztg(ω+φ2)

=36735.321N

Wk=W·K=104328.312N Wk >F

故而,机构产生的夹紧力足够

连杆的机械加工工艺及工装设计

结语

通过对连杆零件的机械加工工艺及其工装设计,使我学到了诸多的在课堂上难以学到的机械加工的知识,大致就有以下的三个方面:

首先,连杆零件的外形较为复杂,其制造技术要求相对较高,加工的刚度较差,容易在加工中产生边形。这就需要我们不仅仅能够正确的掌握定位基准的选择、切削用量、精度控制等专业知识,还应当要有严谨的设计态度,因为设计过程繁琐,要仔细认真才能够更好地完成。

其次,就是关于夹具的设计方法及步骤:定位基准的选择、定位元件的选择、夹紧元件的选择以及夹紧力的计算等等。在以前的课堂学习中,只是通过课本与老师的讲解才了解了一些关于夹具方面的专业知识,而通过这次设计,我在网络上查阅了诸多的相关资料,从而对夹具相关知识有了更多的了解,让我的专业知识能力得到了长足的进步。

最后,在本次的设计之中,我将这几年来所学的专业知识进行了温习,也掌握了诸多学习之外的专业知识。在设计中,将我所掌握的知识进行了整合,让我所学的知识得到了全面的整合,对我之后的学习与工作有着极大的帮助。

除了以上的三个方面,在设计过程中我还熟悉了资料的查阅途径,接触到了大量的专业相关书籍,可谓是收获良多。在此我要感谢在设计中给我帮助的老师与同学们,为我解决了诸多的问题,对本次设计起到了至关重要的作用。

连杆的机械加工工艺及工装设计

参考文献

[1]丁儒琳,陈家彬.汽车厂实习教程.哈尔滨工业大学出版社,92-101.[2]赵如福.金属机械加工工艺人员手册.上海科学技术出版社,1038-1054.[3]陈志祥,段守道.机械制造工艺学简明手册.华中工学院出版社,42-58.[4]机床夹具设计手册.上海科学技术出版社,50-66,5-13.[5]定位与夹紧符号手册.机械工业标准化技术服务部,1-10.[6]赵家齐.机械制造工艺学课程设计指导书.机械工业出版社,62-97.[7]艾兴.切削用量简明手册.机械工业出版社,19-34.[8]机械制图.高等教育出版社,239-246.[9]顾为鹏.连杆零件的机械加工工艺规程和专用夹具设计[J].现代企业教育,2012,17:253-254.[10]王东辉.连杆零件的机械加工工艺规程和专用夹具设计[J].科技展望,2014,23:22.[11]王青云.连杆零件机械加工工艺及专用夹具设计[J].湖南农机,2012,11:114+117.

第18篇:“杠杆”零件的机械加工工艺规程设计

机械制造技术基础课程设计任务书

题目:

姓 名:易涛伟 班 级:A13机械2 学 号:130408331 指导老师:朱从容 日 期:2016-06-25 “杠杆”零件的机械加工工艺规程设计

一、零件图的分析 1.1、生产类型 1.

2、零件的作用

1.3、零件的结构特点及工艺分析

二、工艺规程设计

2.1、确定毛坯的制造形式 2.

2、基面的选择

2.2.1、粗基准的选择

2.2.2、精基准的选择

2.3、工件表面加工方法的选择 2.

4、确定工艺路线

2.5、工艺方案的比较和分析

2.6机械加工余量、工序尺寸及毛坯尺寸的确定

2.6.1、Ф40㎜外圆表面沿轴线长度方向

2.6.2、圆柱内孔Ф25H9㎜

2.6.3、Ф30凸台上2×Ф8㎜

2.6.4、Ф30凸台厚度方向的加工余量及公差

0.01

5 2.6.5、宽度为30㎜表面上Ф10H7(0)㎜

2.7确定切削余量

2.7.1 工序Ⅰ的切削用量的确定

2.7.2 工序Ⅱ的切削用量的确定

2.7.3 工序Ⅲ的切削用量的确定

2.7.4 工序Ⅳ的切削用量的确定

2.7.

5工序Ⅴ的切削用量的确定

三、参考文献

序言

机械制造技术基础课程设计,是综合运用机械制造工艺学的基本知识、基本理论和基本技能,分析和解决实际工程问题的一个重要教学环节;是对学生运用所掌握的“机制工艺”知识及相关知识的一次全面训练。机械制造技术基础课程设计是在学完了该门课程之后的一个重要的实践教学环节,机械制造技术基础课程设计是对学生未来从事机械制造工艺工作的一次基本训练。通过课程设计培养学生制定零件机械加工工艺规程和分析工艺问题的能力。在设计中,学生应熟悉有关标准和设计资料,学会使用有关手册和数据库。

零件的分析

1.1零件的作用

题目所给的零件是CA6140车床的杠杆结构,此零件的作用是支撑、固定,传递扭矩,帮助改变机床工作台的运动方向,要求零件的配合符合要求。

1.2零件的工艺分析

0.0

52 杠杆的Φ250㎜孔的轴线和两个端面有着垂直度的要求。现分述如下:本夹具用于历立式铣床上,加工Φ40㎜凸台端面。工件以0.052Φ250㎜孔及端面和水平面底、Φ30㎜的凸台分别用定位销实现完全定位。铣Φ40㎜端面时工件为悬臂,为了防止加工时变形,采用螺旋辅助支承与工件接触后,用螺母锁紧。要加工的主要工序包括:粗精铣宽

0.015度为Φ40㎜的上下平台、钻Φ10H7的孔、钻2xΦ8H7(0)㎜的小孔、粗精铣Φ30㎜的上下表面。

加工要求有:Φ40㎜的平台的表面粗糙度各为Ra6.3um(上

0.015平台)、Ra3.2um(下平台)、Φ10H7的孔为Ra3.2um。2xΦ8H7(0)㎜孔有平行度分别为0.1um(A)、0.15um(A)。杠杆有过渡圆角为R5,其他的过渡圆角为R3,其中主要的加工表面是Φ30㎜得端面,要用游标卡尺检查。

工艺规程的设计

2.1确定毛坯的制造形式

零件的材料是HT200。考虑到零件在工作中处于润滑状态,采用润滑效果较好的铸铁。由于年生产量很高,达到了中批生产的水平,而且零件的轮廓尺寸不大,铸造的表面要求质量高,故可以采用铸造质量稳定的,适合大批生产的金属模铸造,便于铸造和加工工艺过程,而且还可以提高生产率。

查参考文献得:各加工表面表面总余量、加工表面、基本尺寸、加工余量等级、加工余量数值说明

2.2基面的选择

基面的选择是工艺规程设计的重要工作之一。基面选择的正确与合理,可以使加工质量得到保证,生产率得以提高。否则,加工工艺中会问题百出,更有甚者,还会造成零件大批报废,使生产无法正常进行。

(1)粗基准的选择。对于本零件而言,按照粗基准的选择原则,选择本零件的加工表面就是宽度为Φ40的肩面表面作为加工的粗基准,可用压板对肩台进行加紧,利用一组V型块支承Φ40的外轮廓作主要定位,以消除以消除z、z、y、y四个自由度。再以一面定位消除x、x两个自由度,达到完全定位,就可加工Φ25(H9)的孔。

(2)精基准的选择。主要考虑到基准重合的问题,和便于装夹,采用Φ25(H9)的孔作为精基准。

2.

3、工件表面加工方法的选择

本零件的加工表面有:粗精铣宽度为Φ40mm的上下平台、钻2×Ф8㎜的小孔、粗精铣Φ30㎜凸台的平台。材料为HT200,加工方法选择如下:

1、Φ40mm圆柱的上平台:公差等级为IT8~IT10,表面粗糙度为Ra6.3,采用粗铣→精铣的加工方法。

2、Φ40mm圆柱的下平台:公差等级为IT8~IT10,表面粗糙度为Ra3.2,采用采用粗铣→精铣的加工方法。

3、Ø30mm的凸台上下表面:公差等级为IT13,表面粗糙度为Ra6.3,采用粗铣→精铣的加工方法。

4、钻Φ25(H9)内孔:公差等级为IT6~IT8,表面粗糙度为Ra3.2,采用钻孔→扩孔钻钻孔→精铰的加工方法,并倒1×45°内角。

5、钻2xΦ8(H7)内孔:公差等级为IT6~IT8,采用钻孔→粗铰→精铰的加工方法。

2.

4、确定工艺路线 (1)、工艺路线方案一:

铸造

时效

涂底漆

工序1:铣宽度为Ф40mm的上下平台和宽度为30mm的平台 工序2:铣宽度为Φ30mm的凸台表面 工序3:钻孔使尺寸达到Ф23mm。

工序4:扩孔钻钻孔Ф23使尺寸达到Ф24.8mm。 工序5:铰孔Ф24.8㎜使尺寸达到Ф25(H9)。 工序6:钻、粗、精铰2×Ф8的孔 工序7:检验入库。 (2)、工艺路线方案二:

铸造

时效

涂底漆

工序1:粗铣宽度为Ф40mm的上平台和宽度为30mm的平台。 工序2:精铣宽度为Ф40mm的上平台和宽度为30mm的平台。 工序3:粗铣宽度为Ф40mm的下平台。 工序4:精铣宽度为Ф40mm的下平台。 工序5:扩铰孔使尺寸达到Ф25(H9)。

工序6:粗铣宽度为Φ30mm的凸台表面。 工序7:精铣宽度为Φ30mm的凸台表面。

工序8:钻铰2×Ф8的小孔使尺寸达到Ф8。

工序9:钻铰Ф10H7的孔。

工序10:检验入库。

2.

5、工艺方案的比较和分析:

上述两种工艺方案的特点是:方案一是根据宽度为40mm的上下肩面作为粗基准, Ф25孔作为精基准,所以就要加工Ф25孔时期尺寸达到要求的尺寸,这样就保证了2×Ф8小孔的圆跳动误差精度等。而方案二则根据Ф25孔加工Ф40的上下表面和Ф30的凸台表面,因为它们的加工与Ф25有一定的定位精度和形状误差,先粗加工,接着半精加工,精加工,减少了安装次数,同时也减少了安装误差。所以决定选择方案二作为加工工艺路线比较合理。

由于生产类型为大批生产,故加工设备宜以采用通用机床为主,辅以少量专用机床。其生产方式为以通用机床加专用夹具为主,辅以少量专用机床的流水生产线。工件在各级床上的装卸及各机床间的传送均由人工完成。 粗精铣宽度为Ф40mm的上下平台和宽度为30mm的平台。考虑到工件的定位夹紧方案及夹具结构设计等问题,采用立铣,选择X50K立式铣床,刀具选D=20mm的削平型立铣刀、专用夹具、专用量具和游标卡尺。

粗精铣宽度为Φ30mm的凸台表面。采用X50K立式铣床,刀具选D=20mm的削平型铣刀,专用夹具、专用量检具和游标卡尺。

钻直径为23的孔。采用立式Z535型钻床,刀具选D=23mm的锥柄孔钻(莫氏锥度3号刀),专用钻夹具和专用检具。

扩孔钻钻孔23使尺寸达到24.8mm。采用立式Z535型钻床,刀具选D=24.7mm的锥柄扩孔钻(莫氏锥度3号刀),专用钻夹具和专用检具。

铰孔Ф25(H9)使尺寸达到Ф25(H9)。采用立式Z535型钻床,刀具选D=25mm的锥柄机用铰刀,并倒1×45°的倒角钻用铰夹具和专用检量具。

钻2×Ф8的孔使尺寸达到Ф8。采用立式Z518型钻床,刀具选用D=7.8mm的直柄麻花钻,专用钻夹具和专用检量具。

粗铰2×Ф8螺纹孔使尺寸达到Φ7.96mm。采用立式Z518型钻床,选择刀具为D=8mm直柄机用铰刀,使用专用夹具和专用量检具。

精铰2×Ф8小孔使尺寸达到Φ8(H7)。采用立式Z518型钻床,选择刀具为D=8mm的直柄机用铰刀,使用专用的夹具和专用的量检具。

2.6机械加工余量、工序尺寸及毛坯尺寸的确定

杠杆的零材料是HT200,毛坯的重量约为2KG(经分析),生产类型为成批生产,采用金属模铸造毛坯。根据上述原始资料及加工工艺,分别确定各加工表面的机械加工余量、工序尺寸及毛坯尺寸。

1,Ф40㎜外圆表面沿轴线长度方向及宽度为30㎜的平台高度方向的加工余量及公差

查《机械制造工艺设计简明手册》表2.2-3,其中铸造模选用金属模铸造,铸造材料是HT200,公差等级为为7~9级。查表2.2-4,尺寸公差等级选取8级,加工余量等级选取F,基本尺寸是54㎜,在0~100㎜之间,故加工余量在1.5~2.0㎜之间,现取2.0㎜,长度方向的偏差是00.46㎜。 2,圆柱内孔Ф25H9㎜

毛坯为实心,不冲出孔。内孔的精度要求是H9,参照《机械制造工艺设计简明手册》表2.3-9确定工序尺寸及余量为:

钻孔:Ф23㎜

扩孔:Ф24.8㎜

2Z=1.8㎜

0.052铰孔:Ф25H9(0) ㎜

2Z=0.2㎜

3, Ф30凸台上2×Ф8㎜

0.015内孔的尺寸Ф8H7(0)㎜,参照《机械制造工艺设计简明手册》表

2.3-9确定工序尺寸及余量为: 钻孔:Ф7.8㎜

0.015铰孔:Ф8H7(0)㎜

2Z=0.2㎜

4,Ф30凸台厚度方向的加工余量及公差

查《机械制造工艺设计简明手册》表2.2-3,其中铸造模选用金属模铸造,铸造材料是HT200,公差等级为为7~9级。查表2.2-4,尺寸公差等级选取8级,加工余量等级选取F,基本尺寸是15㎜,在0~100㎜之间,故加工余量在1.5~2.0㎜之间,现取2.0㎜。

0.01

55, 宽度为30㎜表面上Ф10H7(0)㎜

0.015内孔尺寸Ф10H7(0)㎜,参照《机械制造工艺设计简明手册》表

2.3-9确定工序尺寸及余量为: 钻孔:Ф9.8㎜

0.015铰孔:Ф10H7(0)㎜

2Z=0.2㎜

2.7确定切削余量

粗铣宽度为Ф40mm的上平台和宽度为30mm的平台 加工条件:工件材料: HT200,金属模铸造。 机床:X52K立式铣床 刀具:硬质合金端铣刀,材料:YG8,D=125mm ,齿数z=6,寿命T=180min, kr900,此为粗齿铣刀。

因其单边余量:Z=1.3mm 所以铣削深度ap:ap1.3mm

每齿进给量af:根据《切削用量简明手册》表3.5,取af0.20mm/Z 铣削速度V:根据《机械制造设计工艺手册》,取V64m/min。 由式2.1得机床主轴转速n:

1000V100064n163r/min

D3.14125查《机械制造设计工艺简明手册》 n190r/min

Dn3.141251901.24m/s 实际铣削速度v:v1000100060进给量Vf:VfafZn0.128300/603.8mm/s 工作台每分进给量fm:fmVf3.8mm/s228mm/min

精铣Ф40mm的上平台及宽度为30㎜的平台

工件材料: HT200,铸造。 机床: X52K立式升降台铣床。

刀具:高速钢立铣刀:YT15,D125mm ,齿数10,此为细齿铣刀。 精铣该平面的单边余量:Z=0.7mm 铣削深度ap:ap0.3mm

每齿进给量af:根据《切削用量简明手册》表3.5,f=1.2-2.7,取f=2.0,aff/Z0.20mm/Z 铣削速度V:根据《机械制造设计工艺手册》,V=0.35m/s,

机床主轴转速n:

1000V10000.3560n54r/min

D3.14125查《机械制造设计工艺简明手册》X52K机床主轴转速,取n75r/min

Dn3.14125600.39m/s 实际铣削速度v:v1000100060进给量Vf,由式(2.3)有:VfafZn0.202060/602.0mm/s 工作台每分进给量fm: fmVf2.0mm/s120mm/min

粗铣Ф40mm的下平台

加工条件:工件材料: HT200,金属模铸造。 机床:X52K立式铣床 刀具:硬质合金端铣刀,材料:YG8,D=125mm ,齿数z=6,寿命T=180min, kr900,此为粗齿铣刀。

因其单边余量:Z=1.3mm 所以铣削深度ap:ap1.3mm

每齿进给量af:根据《切削用量简明手册》表3.5,取af0.20mm/Z 铣削速度V:根据《机械制造设计工艺手册》,取V64m/min。 由式2.1得机床主轴转速n:

1000V100064n163r/min

D3.14125查《机械制造设计工艺简明手册》 n190r/min

Dn3.141251901.24m/s 实际铣削速度v:v1000100060进给量Vf:VfafZn0.128300/603.8mm/s 工作台每分进给量fm:fmVf3.8mm/s228mm/min

精铣Ф40mm的下平台

工件材料: HT200,铸造。 机床: X52K立式升降台铣床。 刀具:高速钢端铣刀:YT15,D125mm ,齿数10,此为细齿铣刀。 精铣该平面的单边余量:Z=0.7mm 铣削深度ap:ap0.3mm

每齿进给量af:根据《切削用量简明手册》表3.5,f=1.2-2.7,取f=2.0,aff/Z0.20mm/Z

铣削速度V:根据《机械制造设计工艺手册》,V=0.35m/s,

机床主轴转速n:

1000V10000.3560n54r/min

D3.14125查《机械制造设计工艺简明手册》X25K机床主轴转速,取n75r/min

Dn3.14125600.39m/s 实际铣削速度v:v1000100060进给量Vf,由式(2.3)有:VfafZn0.202060/602.0mm/s 工作台每分进给量fm: fmVf2.0mm/s120mm/min

扩铰孔使尺寸达到Ф25(H9)㎜。

1,加工条件

工件材料:HT200灰铸铁,金属模铸造。 加工要求:钻、扩、铰Ф25(H9)㎜的孔。 机床:立式Z535型钻床

刀具:钻孔的锥柄麻花钻钻头材料是高速钢,总长度L为253㎜,刀柄长度l为98㎜;扩孔的锥柄麻花钻钻头材料是高速钢,总长度L为281㎜,刀柄长度l为121㎜;铰孔的锥柄机用铰刀材料是硬质合金,总长度L为268㎜,刀柄长度l为240㎜。

2,计算切削用量 (1)钻孔Ф23㎜

根据《切削用量简明手册》表2.7得,f=0.50㎜/r;表2.15得,v=14m/min。

ns=1000v100014==193.05r/min

23dw

根据《机械制造设计工艺手册》按钻床选取nw=195r/min;

所以实际的切削速度

v=dwnw=

1000231951000=14m/min

(2)扩孔Ф24.8㎜

根据《切削用量简明手册》表2.7得,f=0.50㎜/r;表2.15得,v=14m/min。

ns=1000v100014==180.4r/min 24.7dw

根据《机械制造设计工艺手册》按钻床选取nw=195r/min;

所以实际的切削速度

v=dwnw=

100024.7180.41000=14m/min (3)铰孔Ф25H7㎜

根据《切削用量简明手册》表2.7得,f=2.0㎜/r;表2.15得,v=10m/min。

ns=1000v100010==127.32r/min

25dw

根据《机械制造设计工艺简明手册》按钻床选取nw=140r/min;

所以实际的切削速度

v=dwnw=

1000251401000=11m/min 粗铣Ф30mm的平台

加工条件:工件材料: HT200,金属模铸造。 机床:X52K立式铣床 刀具:硬质合金端铣刀,材料:YG8,D=125mm ,齿数z=6,寿命T=180min, kr900,此为粗齿铣刀。

因其单边余量:Z=1.3mm 所以铣削深度ap:ap1.3mm

每齿进给量af:根据《切削用量简明手册》表3.5,取af0.20mm/Z 铣削速度V:根据《机械制造设计工艺手册》,取V64m/min。 由式2.1得机床主轴转速n:

1000V100064n163r/min

D3.14125查《机械制造设计工艺简明手册》 n190r/min

Dn3.141251901.24m/s 实际铣削速度v:v1000100060进给量Vf:VfafZn0.128300/603.8mm/s 工作台每分进给量fm:fmVf3.8mm/s228mm/min 基本时间的确定:

查《机械制造工艺设计简明手册》得此工序机动时间计算公式:

所以:

==0.66 min 精铣宽度为Φ30mm的凸台表面

工件材料: HT200,铸造。 机床: X52K立式升降台铣床。

刀具:高速钢端铣刀:YT15,D125mm ,齿数10,此为细齿铣刀。 精铣该平面的单边余量:Z=0.7mm 铣削深度ap:ap0.3mm

每齿进给量af:根据《切削用量简明手册》表3.5,f=1.2-2.7,取f=2.0,aff/Z0.20mm/Z

铣削速度V:根据《机械制造设计工艺手册》,V=0.35m/s,

机床主轴转速n:

1000V10000.3560n54r/min

D3.14125查《机械制造设计工艺简明手册》X25K机床主轴转速,取n75r/min

Dn3.14125600.39m/s 实际铣削速度v:v1000100060进给量Vf,由式(2.3)有:VfafZn0.202060/602.0mm/s 工作台每分进给量fm: fmVf2.0mm/s120mm/min 基本时间的确定:

查《机械制造工艺设计简明手册》得此工序机动时间计算公式:

l1=0.5d+(1—2)=0.5125+264.5mm l2=2mm l=100mm 所以:

=1.14 min

钻铰2×Ф8的小孔使尺寸达到Ф8H7 1,加工条件

工件材料:HT200灰铸铁,金属模铸造。 加工要求:钻、绞Ф8H7㎜的孔。 机床:立式Z535型钻床

刀具:钻孔的锥柄麻花钻钻头材料是高速钢,总长度L为156㎜,刀柄长度l为81㎜;绞孔的锥柄机用铰刀材料是硬质合金,总长度L为156㎜,刀柄长度l为139㎜。

2,计算切削用量 (1)钻孔Ф7.8㎜

根据《切削用量简明手册》表2.7得,f=0.25㎜/r;表2.15得,v=16m/min。

ns=1000v100016==653r/min

7.8dw

根据《机械制造设计工艺手册》按钻床选取nw=750r/min;

所以实际的切削速度

v=dwnw=

10007.87501000=18m/min (2)铰孔Ф8H7㎜

根据《切削用量简明手册》表2.25得,f=0.2㎜/r;表2.15得,v=10m/min。

ns=1000v100010==398r/min

8dw

根据《机械制造设计工艺简明手册》按钻床选取nw=400r/min;

8400

所以实际的切削速度

v=dwnw==10m/min

10001000 钻绞Ф10H7的孔

1,加工条件

工件材料:HT200灰铸铁,金属模铸造。 加工要求:钻、铰Ф10H7㎜的孔。 机床:立式Z535型钻床

刀具:钻孔的锥柄麻花钻钻头材料是高速钢,总长度L为156㎜,刀柄长度l为81㎜;绞孔的锥柄机用铰刀材料是硬质合金,总长度L为156㎜,刀柄长度l为139㎜。

2,计算切削用量 (1)钻孔Ф9.8㎜

根据《切削用量简明手册》表2.7得,f=0.25㎜/r;表2.15得,v=16m/min。

ns=1000v100016==519r/min

9.8dw

根据《机械制造设计工艺手册》按钻床选取nw=530r/min;

所以实际的切削速度

v=dwnw=

10009.85301000=16.3m/min (2)铰孔Ф10H7㎜

根据《切削用量简明手册》表2.25得,f=0.2㎜/r;表2.15得,v=10m/min。

ns=1000v100010==318r/min

10dw

根据《机械制造设计工艺简明手册》按钻床选取nw=400r/min;

所以实际的切削速度

v=dwnw=

1000

104001000=12.6m/min

四、参考文献

1,《机械制造工艺学课程设计指导书》第二版 赵家齐编 机械工业出版社

2,《机械制造工艺设计简明手册》 李益民编 机械工业出版社 3,《机床夹具设计手册》 上海科学技术出版社

4,《切削用量简明手册》 艾兴 肖诗纲编 机械工业出版社

第19篇:凸轮轴加工工艺

凸轮轴的加工工艺

凸轮轴的材料:球墨铸铁、合金铸铁、冷激铸铁、中碳钢

球墨铸铁:将接近灰铸铁成份的铁水经镁或镁的合金或其它球化剂球化处理后而获得具有球状石墨的铸铁。石墨呈球状,大大减轻了石墨对基体的分割性和尖口作用,球墨铸铁具有较高的强度、耐磨性、抗氧化性、减震性及较小的缺口敏感性。

球墨铸铁的凸轮轴一般用在单缸内燃机上,如S195柴油机,做凸轮轴用的球墨铸铁用QT600-3或QT700-2,要求球化为2级(石墨球化率90-95%)石墨粒度大小大于6级。凸轮轴整体硬度HB230-280 合金铸铁:将接近灰铸铁成份的铁水加入Mn、Cr、Mo、Cu等元素。从而与珠光体形成合金,减少铁素体的数量。合金铸铁的凸轮轴一般用于高转速凸轮轴。如CAC480凸轮轴,凸轮轴整体硬度HB263-311。

冷激铸铁:一般用于低合金铸铁表面冷激处理,使外层为白口或麻口组织,心部仍是灰口组织。如:372凸轮轴。使用冷激铸铁的凸轮轴处于干摩擦或半干摩擦工作状态,而具有承受较大的弯曲与接触应力,要求材料表面层抗磨且高的强度,心部仍有一定的韧性。目前国内所用的冷激铸铁主要有两大类:铬、钼、铜冷激铸铁和铬、钼、镍冷激铸铁,冷硬层的金相组织:莱氏体+珠光体(索氏体)冷激铸铁硬度为HRC45—52,目前,国内冷激铸铁的硬度在HRC47左右。

中碳钢:一般用于大型发动机凸轮轴。如:6102发动机采用模锻锻造成型,也有一部分用于摩托凸轮轴,成型较简单。模锻后一般要进行退火处理以便于机械加工。

凸轮轴加工的典型工艺

一.凸轮轴轴颈粗加工采用无心磨床磨削

无心磨床的磨削方式有2种:贯穿式无心磨削和切入式无心磨削。贯穿式无心磨削一般用于单砂轮,它的导轮是单叶双曲面,推动凸轮轴沿轴向移动,仅仅用于磨削光轴。切入式无心磨削是由多砂轮磨削(若是单砂轮磨削,一般砂轮被修整成成型砂轮,如:磨削液压挺柱的球面),如现有480凸轮轴的磨削,可磨削阶梯轴,导轮为多片盘状组合而成,工件不能沿轴向移动,无论是哪一种磨削方式,工件的中心都高于砂轮和导轮的中心,一般切入式磨削都有上料工位、磨削工位、测量工位、卸料工位组成。砂轮线速度60m/s,轴颈径向磨削余量可达3.5mm,单件磨削时间18s,单件工时25s。用无心磨床加工凸轮轴是一种新颖、独特的新工艺,新方法,但又存在一定的局限性,特别是不易磨削轴肩和端面,一般不用于多品种凸轮轴的加工,只用于单一品种、大批量的生产,若要更换所加工的凸轮轴品种,就要更换导轮和砂轮,各砂轮间距需重新调整。切入式无心磨床的修整一般采用单颗粒金刚石修整,修整器所走的路线是凸字形,修整器靠模各段差值与凸轮轴的各段轴颈差值相等。粗磨凸轮轴轴颈所用的砂轮都属于碳化物系列,粒度为60,砂轮线速度为45m/。

二、铣端面,钻中心孔

中心孔加工是以后加工工序的定位基准,在铣端面时,一般只限定5个自由度即可,用2个V型块限定4个自由度,轴向自由度是由凸轮轴3#轴颈前端面或后端面(在产品设计中,该面应提出具体要求)。目前普遍采用的是自定心定位夹紧,密齿刀盘铣削。轴向尺寸保证后端面到毛坯的粗定位基准尺寸和整个凸轮轴长度,鉴于凸轮轴皮带轮轴颈尺寸较小,钻中心孔时一般选用B5中心钻,钻后的孔深用φ10钢球辅助检查,保证球顶到后端面尺寸和2钢球顶部之间的距离,这样可保证以后定位的一致性。

三、凸轮轴的热处理

热处理:将原材料或未成品置于空气或特定介质中,用适当方式进行加热、保温和冷却,使之获得人们所需要的力学或工艺性能的工艺方法。

热处理分类:一般热处理、化学热处理、表面热处理

球墨铸铁凸轮轴一般都是等温淬火。冷却介质为10号、20号锭子油盐浴或碱浴,淬火后经140°C-250°C低温回火,回火后的组织为黑色针叶状马氏体,硬度HRC50-54。

合金铸铁和钢件凸轮轴一般采用中频淬火:淬火频率1000-10000Hz,一般选用7000Hz。也就是感应加热表面淬火,其原理是:将凸轮轴的凸轮放入加热线圈中,由于电流的集肤效应,使凸轮由外层向内加热、升温,使表层一定深度组织转变成奥氏体,而后迅速淬硬的工艺,目前480凸轮轴采用自然回火的方法,其凸轮表面组织为针状马氏体。

凸轮轴经表面热处理:可较大地提高零件的扭转和弯曲疲劳强度和表面的耐磨性。

感应加热淬火变形小、节能、成本低、劳动生产率高、淬火机可放在冷加工生产线上,便于生产管理。

480凸轮轴中频淬火机在感应加热时,要对电源、变压器、感应线圈进行冷却,要求冷却水的温度在25°C-30°C,淬火冷却液的温度为53°C-62°C,若机床本身达不到要求,必须在机床外提一套附加冷却装置,用来给冷却水制冷。

四、凸轮轴的深孔加工

在机械加工中L/D>5时的孔加工可称为深孔加工,用普通麻花钻钻深孔时有以下困难。

1.钻头细长。刚性差,加工时钻头易弯曲和振动,难以保证孔的直线度与加工精度。

2.切屑多,而排除切屑的通道长而狭窄,切屑不容易排出。

3.孔深切削液不易进入,切削温度过高,散热困难,钻头容易断。

深孔钻按工艺的不同可分为在实心物体上钻孔、扩孔、套料3种,而以在实心料上钻孔用得最多,如480凸轮所用的深孔都是由枪钻经2头加工而成的。每次钻孔深为L/2+10mm。

枪钻钻削是单刃外排屑式的,一般适用于加工φ2-φ20mm孔, L/D>100、表面粗糙度Ra12.5-3.2mm、精度H8-H10级的深孔。单刃外排屑深孔钻,最早用于加工枪管,故称枪钻,也是φ2-φ6mm深孔加工的唯一办法。枪钻带有V形切削刃和一个切削液孔的钻头、钻杆、及适用于某专用设备的钻柄组成。高压切削液(7MPa)通过钻头的小孔送到切削区域内,进行冷却、润滑并帮助排屑,然后再将切屑与切削液顺着V型刀杆排入集中冷却系统中。钻头为硬质合金,采用焊接式结构。切削用量一般为0.06-0.1mm/r,为了更好地控制刀具的破损程度,刀具采用径向负荷反馈,一旦刀具切削力达到一定的数值,在数控系统的作用下,刀具能自动退回,从而避免枪钻折断,提高刀具的使用寿命。磨钝后的刀具换下,再重新进行刃磨后方可使用。

凸轮轴深孔加工冷却液一般用锭子油,虽然油的冷却效果比乳化液差,但油的润滑效果比冷却液要好得多。

五、主轴颈快速点磨加工与CBN砂轮

快速点磨是德国勇克公司开发出来的一种先进的外圆高效磨削新工艺,该机床加工凸轮轴只需两顶尖定位夹紧,无需任何夹紧工具,利用前顶尖的高速旋转,通过顶尖和凸轮轴中心孔的摩擦来驱动工件运动,可以实现轴类零件在一次装夹后,用一片砂轮完成7个轴颈、一个端面和一个磨削圆角的工艺。

快速点磨砂轮是横向磨损,在磨损过程中,被磨削的凸轮轴外形尺寸不会因此而发生变化,磨削端面时,砂轮可倾斜±0.5,使砂轮与工件的接触面只有传统磨削端面的1/2。

CBN具有良好的导热性,其导热率是硬质合金的13倍,铜的3倍,另外CBN具有远优于金刚石的热稳定性和化学稳定性(金刚石与铁簇元素易产生亲和作用),可耐1300—1500的高温,并且与铁簇元素有很大的化学惰性,CBN是制作切削黑色金属的理想刀具材料。

CBN属于立方晶系,它的硬度、强度和其它物理性能远远优于刚玉等系列磨料。在进行磨削过程中CBN自身磨损非常少,在大批量生产过程中,单个零件所需要的成本较小。砂轮的形状、尺寸变化极小,耐用度较高,修整频次约为刚玉系列的1/20,每次修整量约为刚玉系列的1/25,砂轮与工件的磨削区内磨削温度较低,可避免在磨削的弹性变形阶段工件所产生的裂纹和磨削烧伤等现象的出现。

CBN具有良好的化学稳定性与耐热性,与碳在2000C时才起反应,在高温下易与水产生反应。砂轮的耐用度高,机床的使用率可达97%以上,与一般砂轮磨削相比,可提高功效600%--700%。

当砂轮在宽度方向的磨损量占砂轮宽度的80%时便对砂轮进行修整,砂轮每次修整量为0.006mm,共分3部进行修整,每一步修整量为0.002mm,每修整一次可磨削120根凸轮轴,砂轮线速度为120m/s,可获得较高的金属切除率,使用冷却油做为冷却液,不仅仅是给砂轮和工件提供冷却液,同时也给砂轮和工件提供更好的润滑,同时由于油膜的吸附作用,还可以防止凸轮轴的轴颈表面氧化,防止磨削完后的工件表面生锈。磨削液的供给是采用喷射法提供的冷却液,冷却较充分,可使砂轮的寿命提高一倍,金属切除率提高一倍以上,同时采用冷却液反冲的方法,冲洗砂轮表面,防止砂轮堵塞,使CBN颗粒始终以锋利的状态对工件进行切削,再加上CBN粒度较小,凸轮轴轴颈单位面积上参加切削的磨粒比一般砂轮要多,轴颈在被切削时所产生的弹性摩擦和变形阶段均较小,因此产生的弹性变形和塑性变形均较小,提高了表面粗糙度,防止表面产生磨削烧伤和因磨粒因素而引起的裂纹。在磨粒切削阶段,对产生的热应力和变形应力均较小。 由于磨削速度很高,磨削热量来不及传入工件的深处,瞬时聚集在凸轮轴很薄的表层,形成切屑被带走。磨粒切削点的温度达1000C以上,而内部只有几十度

选用CBN砂轮磨削,磨粒锋利,磨削力小,故磨削区发热量少

CBN显微硬度7300—9000HV,抗弯强度300MPa、抗压强度800--1000MPa、热稳定性1250C--1350C。 应用声音传感器严格限制砂轮和金刚滚轮间的距离,主要是防止砂轮修整时砂轮和金刚滚轮发生撞击。砂轮架纵向进给时,传感器测头与砂轮间形成一小的缝隙,砂轮高速旋转压缩砂轮周围的空气,根据空气流通的通道大小不同,所产生的气阻声音大小不一样,从而判断传感器和砂轮间的缝隙而做出反馈,一旦砂轮和金刚滚轮产生接触,修整器自动修整砂轮,而声音传感器能根据声音尖锐响声大小来判断砂轮修整的正确性。

与树脂类结合剂相比,陶瓷结合剂化学性能稳定,耐热、抗酸、碱,气孔率大,工作时不易发热,在磨削过程中易脱落,热膨胀系数小,强度较高,能保持好CBN的几何形状,且磨具易修整。

用于磨削凸轮轴轴颈和端面的CBN砂轮立方氮化硼厚度只有4.5—5MM,并且是粘附在刚性钢盘上,刚性较好。

工件转速与砂轮转速的比为:40/8000 无进给磨削即光磨,可提高工件的几何精度和降低表面粗糙度参数值,表面粗糙度随光磨次数的增加而降低,细粒度砂轮比粗粒度好

砂轮的修整:修整通常包括整形和修锐,整形是使砂轮达到要求的几何形状和精度,砂轮的几何形状采用数控插补法进行,修锐是除去磨粒间的结合剂,使磨粒露出结合剂一定高度,形成切削刃,磨粒间空隙以容纳切屑。

金刚石滚轮磨削修整的特点:生产率高:以切入法进行修整,修整时间仅需2-10秒,可在进行凸轮轴更换工件时进行修整,不耽误生产节拍,同时由于金刚滚轮的寿命长,修整时间短,大大缩短了辅助时间,单件工件的消耗较低,金刚滚轮的精度较高,修整后的砂轮表面质量也较好。

矿物油冷却液的主要成份是轻质矿物油,加入适量的油溶性防锈添加剂。为了增加矿物油的润滑性能,常加入油性添加剂如脂肪酸等,以提高矿物油在低温低压时的渗透和润滑效果。矿物油的供给方法是喷射法,这样,可以提高供液压力,增大磨削液供给速度,以便将磨削热量迅速带走,并能冲破砂轮高速旋转的气流,使磨削液能有效的进入磨削区,改善磨削效果。由于砂轮的气孔小,磨削液必须经过精密过滤。由于磨削过程所产生的磨屑和砂粒等杂质在磨削液中不断增加,以至磨削液变脏变臭,不仅影响磨削工件的质量,还会危害环境卫生,快速点磨所用的过滤是柱状纸质过滤。

六、凸轮的加工

传统的凸轮加工采用靠模加工,一般来讲,第厂进、排气凸轮都 有一个母靠模,凸轮轴上有几个凸轮就有几个靠模,这种加工其实就是仿形加工,母靠模的加工误差也会复映到加工的成品凸轮上。具体来说,有以下缺陷。

1.砂轮的利用率也较低,以现生产的480凸轮轴为例,靠模机床砂轮线速度为60m/s,刚换上的砂轮直径为φ760mm,但使用到φ710mm后就必须重新换砂轮,否则凸轮的型面的误差会增大,砂轮从φ760mm磨损到φ710mm凸轮型面误差为±0.015mm.2.工件头架电架为双速电机,凸轮轴只能用固定转速旋转、凸轮型面上多个磨削点的线速度不一样,磨削时单位时间的切除量和磨削力不一样,导致凸轮型面加工产生误差,且容易产生磨削烧伤和裂纹。凸轮等速磨削时型面误差为0.036mm。凸轮变速磨削时型面误差为0.012mm。

3.工件支承在装有尾架、中心架的摇架上,摇架机构往复摆动势头影响凸轮型面精度、粗糙度和生产效率的提高。4.同一个靠模只能用于同一种凸轮轴,因此只适用于单一品种生产,否则就需要重新换靠模,不能实现柔性化,多品种生产。 现代的凸轮轴加工用数控磨削,具有如下特点: 1.用一套数控装置(目前世界上最新的是西门子480D和FANAC210i)既控制工件主轴的无级变速旋转和分度又控制砂轮架按凸轮型面的升程数值和降程数值的往复运动及横向进给。

2.工件主轴由NC装置控制的伺服电机驱动,实现无级变速传动,不仅可以实现粗磨和精磨所需要的不同转速,而且可以实现工件主轴在每转内按凸轮不同曲线进行自动变速磨削。这可以使凸轮型面上每一磨削点的线速度,金属切削量和磨削力基本一致,对保证凸轮表面的磨削质量是非常重要的。

3.砂轮可实现高速、恒线速度磨削。如480凸轮轴kopp磨床80m/s.4.具有较大的柔性。CNC装置可以存贮20个凸轮轮廓数据和9个磨削数据。满足了凸轮轴多品种变化的柔性生产需要。

5.砂轮主轴采用内平衡装置,取代了以前的液力平衡装置和机械平衡装置,平衡精度高,砂轮几乎不抖动,提高凸轮型面的磨削精度。

6.采用金刚滚轮修整,修整时采用声速传感器来控制每次砂轮修整量,能得到好的砂轮修整精度,并且每次砂轮修整后NC装置能自动记忆并补偿。

7.采用CBN砂轮,刚换上的新砂轮与换下来废砂轮之间半径方向只有4.5-5mm,从而保证凸轮型面的一致性。

七.凸轮轴的化学处理

化学处理是将金属置于一定化学介质中,通过化学反应在金属表面生成一种化学覆盖层使获得装饰、耐蚀、绝缘等不同的性能。

化学处理一般有氧化处理和磷化处理。 磷化处理优点:

1.凸轮轴的凸轮一般要经过磷化处理,经过磷化处理后的凸轮在大气中较稳定耐蚀性高于氧化处理,磷化后经重铬酸钾溶液填充浸油处理后,能进一步提高耐蚀性。

2.磷化膜孔隙多,具有很强的吸附能力。3.具有润滑性和减摩性。 4.具有较高的绝缘性。

一般经磷化处理后的凸轮,在经过一段时间磨合后,在桃尖处磷化膜脱落变得铮亮,有利于凸轮和挺柱的初期磨合。一般来说,凸轮轴的磷化膜厚度为0.0025—0.006mm,为了保证凸轮轴的表面精度,要求磷化前的凸轮表面粗糙度0.6。

八、凸轮轴的抛光

凸轮轴的主轴颈、油封轴颈要求表面粗糙度0.2,所以必须除去主轴颈和油封轴颈的表面磷化膜,为了保证主轴颈和油封轴颈表面粗糙度,必须对它们进行抛光处理,在抛光过程中,由于摩擦生热少,磨;粒散热时间长,可有效地减少工件的变形、烧伤,主要是提高表面的加工精度,使凸轮轴轴颈获得光亮光滑的表面,但不能提高产品尺寸和几何精度,对零件的形位误差不产生任何改变,按目前的工艺水平,抛光砂带采用纸质砂带,砂粒的粒度280—320,抛光液选用煤油,抛光机的专用工装为硬质树脂制的上下两个半圆。

九、凸轮轴的探伤

由于凸轮与挺杆接触时,表面接触应力较大,凸轮表面不允许有任何缺陷,所以凸轮轴表面需要经过探伤,探伤分为两类:磁粉探伤和荧光探伤,主要探测凸轮在淬火过程中产生的淬火裂纹和磨削过程中产生的磨削裂纹。探伤也是一种无损检测方法,按现有的生产水平,荧光探伤比较干净,优于磁粉探伤,因为磁粉探伤除了要配置磁悬液外,现场生产也难得保持干净,并且经过退磁后,仍然有一部分磁通量流在凸轮轴上。

十、凸轮轴的清洗

凸轮轴不仅仅要进行表面清洗,更主要的是主油道的清洗和油孔的清洗,防止铁屑等脏物滞留在主油道孔的搭结处,除去油孔孔口毛刺,一般来讲,单根凸轮轴的清洁度为10毫克左右,若清洁度超标,将加速发动机零件的磨损,缩短发动机的寿命,清洗后的凸轮轴,还要吹干,涂上防锈油,并且做好防尘工作,存放在零件库内。

第20篇:螺栓加工工艺

螺栓加工工艺为:热轧盘条-(冷拨)-球化(软化)退火-机械除鳞-酸洗-冷拨-冷锻成形-螺纹加工-热处理-检验一,钢材设计在紧固件制造中,正确选用紧固件材料是重要一环,因为紧固件的性能和其材料有着密切的关系。如材料选择不当或不正确,可能造成性能达不到要求,使用寿命缩短,甚至发生意外或加工困难,制造成本高等,因此紧固件材料的选用是非常重要的环节。冷镦钢是采用冷镦成型工艺生产的互换性较高的紧固件用钢。由于它是常温下利用金属塑性加工成型,每个零件的变形量很大,承受的变形速度也高,因此,对冷镦钢原料的性能要求十分严格。在长期生产实践和用户使用调研的基础上,结合GB/T6478-2001《冷镦和冷挤压用钢技术条件》GB/T699-1999《优质碳素结构钢》及目标JISG3507-1991《冷镦钢用碳素钢盘条》的特点,以8.8级,9.8级螺栓螺钉的材料要求为例,各种化学元素的确定。C含量过高,冷成形性能将降低;太低则无法满足零件机械性能的要求,因此定为0.25%-0.55%。Mn能提高钢的渗透性,但添加过多则会强化基体组织而影响冷成形性能;在零件调质时有促进奥氏体晶粒长大的倾向,故在国际的基础上适当提高,定为0.45%-0.80%。Si能强化铁素体,促使冷成形性能降低,材料延伸率下降定为Si小于等于0.30%。S.P.为杂质元素,它们的存在会沿晶界产生偏析,导致晶界脆化,损害钢材的机械性能,应尽可能降低,定为P小于等于0.030%,S小于等于0.035%。B.含硼量最大值均为0.005%,因为硼元素虽然具有显著提高钢材渗透性等作用,但同时会导致钢材脆性增加。含硼量过高,对螺栓,螺钉和螺柱这类需要良好综合机械性能的工件是十分不利的。

二,球化(软化)退火沉头螺钉,内六角圆柱头螺栓采用冷镦工艺生产时,钢材的原始组织会直接影响着冷镦加工时的成形能力。冷镦过程中局部区域的塑性变形可达60%-80%,为此要求钢材必须具有良好的塑性。当钢材的化学成分一定时,金相组织就是决定塑性优劣的关键性因素,通常认为粗大片状珠光体不利于冷镦成形,而细小的球状珠光体可显著地提高钢材塑性变形的能力。对高强度紧固件用量较多的中碳钢和中碳合金钢,在冷镦前进行球化(软化)退火,以便获得均匀细致的球化珠光体,以更好地满足实际生产需要。对中碳钢盘条软化退火而言,其加热温度多选择在该钢材临界点上下保温,加热温度一般不能太高,否则会产生三次渗碳体沿晶界析出,造成冷镦开裂,而对于中碳合金钢的盘条采用等温球化退火,在AC1+(20-30%)加热后,炉冷到略低于Ar1,温度约700摄氏度等温一段时间,然后炉冷至500摄氏度左右出炉空冷。钢材的金相组织由粗变细,由片状变球状,冷镦开裂率将大大减少。35\\45\\ML35\\SWRCH35K钢软化退火温度一般区域为715-735摄氏度。 三,剥壳除鳞冷镦钢盘条去除氧化铁板工序为剥亮,除鳞,有机械除鳞和化学酸洗两种方法。用机械除鳞取代盘条的化学酸洗工序,既提高了生产率,又减少了环境污染。此除鳞过程包括弯曲法(普遍使用带三角形凹槽的圆轮反覆弯曲盘条),喷九法等,除鳞效果较好,但不能使残余铁鳞去净(氧化铁皮清除率为97%),尤其是氧化铁皮粘附性很强时,因此,机械除鳞受铁皮厚度,结构和应力状态的影响,使用于低强度紧固件(小于等于6.8级)用的碳钢盘条。高强度紧固件(大于等于8.8级)用盘条在机械除鳞后,为除净所有的氧化铁皮,再经化学酸洗工序即复合除鳞。对低碳钢盘条而言,机械除鳞残留的铁皮容易造成粒拔模不均匀磨损。当粒拔模孔由于盘条钢丝摩擦外温时粘附上铁皮,使盘条钢丝表面产生纵向粒痕,盘条钢丝冷镦凸缘螺栓或圆柱头螺钉时,头部出现微裂纹的原因,95%以上是钢丝表面在拉拔过程中产生的划痕所引起。因此,机械除鳞法不宜用来高速拉拔。

四,拉拔拉拔工序有两个目的,一是改制原材料的尺寸;二是通过变形强化作用使紧固件获得基本的机械性能,对于中碳钢,中碳合金钢还有一个目的,即是使盘条控冷后得到的片状渗碳体在拉拔过程中尽可能的Crack,为随后的球化(软化)退火得到粒状渗碳体做好准备,然而,有些厂家为降低成本,任意减少拉拔道次,过大的减面率增加了盘条钢丝的加工硬化倾向,直接影响了盘条钢丝的冷镦性能。如果各道次的减面率分配不合适,也会使盘条钢丝在拉拔过程中产生扭转裂纹,这种沿钢丝纵向分布,周期一定的裂纹在钢丝冷镦过程中暴露。此外,拉拔过程中如润滑不好,也可造成冷拔盘条钢丝有规律地出现横裂纹。盘条钢丝出出粒丝模口上卷同时的切线方向与拉丝模不同心,会造成拉丝模单边孔型的磨损加剧,使内孔失圆,造成钢丝圆周方向的拉拔变形不均匀,使钢丝的圆度超差,在冷镦过程中钢丝横截面应力不均匀而影响冷镦合格率。盘条钢丝拉拔过程中,过大的部分减面率使钢丝的表面质量恶化,而过低的减面率却不利于片状渗碳体的破碎,难以获得尽可能多的粒状渗碳体,即渗碳体的球化率低,对钢丝的冷镦性能极为不利,采用拉拔方式生产的棒料和盘条钢丝,部分减面率直控制在10%-15%的范围内。

五,冷锻成形通常,螺栓头部的成形采用冷镦塑性加工,同切削加工相比,金属纤维(金属留线)沿产品形状呈连续状,中间无切断,因而提高了产品强度,特别是机械性能优良。冷镦成形工艺包括切料与成形,分单工位单击,双击冷镦和多工位自动冷镦。一台自动冷镦机分别在几个成型凹模里进行冲压,镦锻,挤压和缩径等多工位工艺。单工位或多工位自动冷镦机使用的原始毛坯的加工特点是由材料尺寸长5-6米的棒料或重量为1900-2000KG的盘条钢丝的尺寸决定的,即加工工艺的特点在于冷镦成型不是采用预先切好的单件毛坯,而是采用自动冷镦机本身由棒料和盘条钢丝切取和镦粗的(必要时)毛坯。在挤压型腔之前,毛坯必须进行整形。通过整形可得到符合工艺要求的毛坯。在镦锻,缩径和正挤压之前,毛坯不需整形。毛坯切断后,送到镦粗整形工位。该工位可提高毛坯的质量,可使下一个工位的成型力降低15-17%,并能延长模具寿命,制造螺栓可采用多次缩径。1.用半封闭切料工具切割毛坯,最简单的方法是采用套筒式切料工具;切口的角度不应大于3度;而当采用开口式切料工具时,切口的斜角可达5-7度。2.短尺寸毛坯在由上一个工位向下一个成型工位传递过程中,应能翻转180度,这样能发挥自动冷镦机的潜力,加工结构复杂的紧固件,提高零件精度。3.在各个成型工位上都应该装有冲头退料装置,凹模均应带有套筒式顶料装置。4.成型工位的数量(不包括切断工位)一般应达到3-4个工位(特殊情况下5个以上)。5.在有效使用期内,主滑块导轨和工艺部件的结构都能保证冲头和凹模的定位精度。6.在控制选料的挡板上必须安装终端限位开关,必须注意镦锻力的控制。在自动冷镦机上制造高强度紧固件所使用的冷拨盘条钢丝的不圆度应在直径公差范围内,而较为精密的紧固件,其钢丝的不圆度则应限制在1/2直径公差范围内,如果钢丝直径达不到规定的尺寸,则零件的镦粗部分或头部就会出现裂痕,或形成毛刺,如果直径小于工艺所要求的尺寸,则头部就会不完整,棱角或涨粗部分不清晰。冷镦成型所能达到的精度还同成型方法的选择和所采用的工序有关。此外,它还取决于所用的设备的结构特点,工艺特点及其状态,工模具精度,寿命和磨损程度。冷镦成型和挤压使用的高合金钢,硬质合金模具的工作表面粗糙度不应大Ra=0.2um,这类模具工作表面的粗糙度达到Ra=0.025-0.050um时,具有最高寿命。 六,螺纹加工螺栓螺纹一般采用冷加工,使一定直径范围内的螺纹坯料通过搓(滚)丝板(模),由丝板(滚模)压力使螺纹成形。可获得螺纹部分的塑性流线不被切断,强度增加,精度高,质量均一的产品,因而被广泛采用。为了制出最终产品的螺纹外径,所需要的螺纹坯径是不同的,因为它受螺纹精度,材料有无镀层等因素限制。滚(搓)压螺纹是指利用塑性变形使螺纹牙成形的加工方法。它是用带有和被加工的螺纹同样螺距和牙形的滚压(搓丝板)模具,一边挤压圆柱形螺坯,一边使螺坯转动,最终将滚压模具上的牙形转移到螺坯上,使螺纹成形。滚(搓)压螺纹加工的共同点是滚动转数不必太多,如果过多,则效率低,螺纹牙表面容易产生分离现象或者乱扣现象。反之,如果转数太少,螺纹直径容易失圆,滚压初期压力异常增高,造成模具寿命缩短。滚压螺纹常见的缺陷:螺纹部分表面裂纹或划伤;乱扣;螺纹部分失圆。这些缺陷若大量发生,就会在加工阶段被发现。如果发生的数量较少,生产过程注意不到这些缺陷就会流通到用户,造成麻烦。因此,应归纳加工条件的关键问题,在生产过程控制这些关键因素。 七,热处理高强度紧固件根据技术要求都要进行调质处理。热处理调质是为了提高紧固件的综合机械性能,以满足产品规定的抗拉强度值和屈强比。热处理工艺对高强度紧固件尤其是它的内在质量有着至关重要的影响,因此,要想生产出优质的高强度紧固件,必须要有先进的热处理技术装备。由于高强度螺栓生产量大,价格低廉,螺纹部分又是比较细微相对精密的结构,因此,要求热处理设备必须具备生产能力大,自动化程度高,热处理质量好的能力。进入20世纪90年代以来带有保护气氛的连续式热处理生产线已占主导地位,震底式,网带炉尤其适用于中小规格紧固件的热处理调质。调质线除了炉子密封性能好以外,还具有先进的气氛,温度和工艺参数计算机控制,设备故障报警和显示功能。高强度紧固件从上料-清洗-加热-淬火-清洗-回火-着色到下线,全部自动控制运行,有效保证了热处理质量。螺纹的脱碳会导致紧固件在未达到机械性能要求的抗力时先发生脱扣,使螺纹紧固件失效,缩短使用寿命。由于原料的脱碳,如果退火不当,更会使原材料脱碳层加深。调质热处理过程中,一般会从炉外带进来一些氧化气体。棒料钢丝的铁锈或冷拔后盘条钢丝表面上的残留物,入炉加热后也会分解,反应生成一些氧化性气体。例如,钢丝的表面铁锈,它的成分是碳酸铁及氢氧化物,在加热后将分解成CO2及H2O,从而加重了脱碳。研究表明,中碳合金钢的脱碳程度较碳钢严重,而最快的脱碳温度在700-800摄氏度之间。由于钢丝表面的附着物在一定条件下分解化合成CO2和H2O的速度很快,如果连续式网带炉炉气控制不当,也会造成螺丝脱碳超差。高强度紧固件当采用冷镦成形时,原材料和退火的脱碳层不但仍然存在,而且被挤压到螺纹的顶部,对于需要淬火的紧固件表面,得不到所要求的硬度,其机械性能(特别是强度和耐磨性)降低。另外,钢丝表面脱碳,表层与内部组织不同而具有不同的膨胀系数,淬火时有可能产生表面裂纹。为此,在淬火加热时要保护螺纹顶部不脱碳,还要对原材料已脱碳的紧固件进行适度的覆碳,把网带炉中的保护气氛的优势调到和被覆碳的零件原始含碳量基本相等,使已脱碳的紧固件慢慢恢复到原来的含碳量,碳势设定在0.42%-0.48%为宜,覆碳温度与淬火加热相同,不能在高温下进行,以免晶粒粗大,影响机械性能。紧固件在调质淬火过程中可能出现的质量问题主要有:淬火态硬度不足;淬火态硬度不均;淬火变形超差;淬火开裂。现场出现的这类问题往往与原材料,淬火加热和淬火冷却有关,正确制订热处理工艺,规范生产操作过程,往往可以避免此类质量事故。

八,结语综上所述,影响高强度紧固件品质的工艺因素有钢材设计,球化退火,剥壳除鳞,拉拨,冷镦成形,螺纹加工,热处理等方面,有时则是诸种因素的叠加。我们知道,紧固件缺陷正是由于产品质量特征的波动性造成的,只有对产品制造流程中的工艺因素准确了解,由此产生持续改进品质的巨大原动力,才能通过质量的不断提升获得更多的利润和更强的竞争力!

《机械加工工艺范文.doc》
机械加工工艺范文
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

相关推荐

实施方案自查报告整改措施先进事迹材料应急预案工作计划调研报告调查报告工作汇报其他范文
下载全文