中学数学中变式教学的设计

2020-03-03 12:36:34 来源:范文大全收藏下载本文

中学数学中变式教学的设计

姓名:郑丽朋

江泽民主席指出:“创新是一个民族进步的灵魂,是国家兴旺发达的不竭动力,一个民族缺乏独创能力,就难以屹立于世界民族之林” 。人才的培养,已成为民族振兴的关键。学校教育是以课堂教学为主,教学过程既是学生在教师指导下的认知过程,也是学生自我获得发展的过程,同时它还是培养学生创造力的过程。因此,教师如何通过课堂教学,渗透创新教育思想,激发学生的创造欲望,培养学生创造思维能力就成了教学的一个关键。数学正是一门培养创造思维能力的基础课,在数学教学中培养学生的创造思维能力,发展创造力是时代对我们教育提出的要求。为实现这个目标,必须在教学过程中,进行变式教学,让学生从不同的角度,多方位,多层次,去观察、去分析、探索。

所谓变式教学,即教学中变换问题的条件和结论、变换问题的形式,而不换问题的本质,并使本质的东西更全面,使学生不迷恋于事物的表象,而能自觉地注意到从本质看问题。另一方面,在平时的教学中,教师过分强调程式化和模式化,例题教学中给学生归纳了各种类型,并要求按部就班地解题,不许越雷池一步,要求学生解答大量重要性练习題,减少了学生自己思考和探索的机会。这种灌输式的教学使学生的思维缺乏应变能力,表现出思维僵化及思维的惰性,变式教学可使学生注意从事物之间的联系和矛盾上来看问题,在一定程度上可克服和减少这一现象。

现从以下几种方法阐述,本人在教学过程中如何利用变式教学,培养学生思维的灵活性。

(一)一图多变

例:如图,在以AB为直径的半园内有一点P,AP、BP的延长线交半园于C、D,求证:AP•AC+BP•BD为定值。

分析:过P作PM⊥AB, P、D、A、M及P、C、M、B共圆 据割线定理知:

AP•AC=AM•AB,BP•BD=BM•BA 两式相加得:

AP•AC+BP•BD=AM•AB+BM•AB=AB(AM+MB)=AB2(定值) 变題1:当P点落在半园上,原结论是否成立?

分析:由于AP与AC重合,BP与BD重合,故原结论成立。

变题2:当P点落在半圓外,且夹在过A点,B点的切线内,原结论是否成立?

分析:由C、M、B、P共圓知 AP•AC=AM•AB„„(1) 由A、M、D、P共圓知 BP•BD=BM•AB„„(2) 由(1)+(2)得AP•AC+BP•BD=AB2(AM+BM)=AB2定值 变题3:如右图,当P点落在半圆外,且在过A或B的半圆切线上,原结论是否成立?

分析:如右图,显然有AB⊥BP、BC⊥AP易证AC•AP=AB2。 变題4:当P点落在半圓外,且在过点A点B的两切线之外时,原结论是否成立?

分析:这时BP的延长线在以AB为直径的另一个半圓上连

1 结BC、AD且过P作PM⊥AB 由P、C、B、M及P、A、D、M两个四点共圓,这时有 AP•AC=AM•AB,BP•BD=BA•BM ∴AP•AC+BP•BD=AM•AB+BA•BM=AB(AM+BM)≠AB2不成立,但若把式子改为: AP•AC-BP•BD=AM•AB-BA•BM=AB(AM-BM)≠AB2,(定值仍为AB2) 从本題的延伸过程中,使学生看到某些因素的不断变化,从而产生一个个新的图形,从这些图形的演变过程中,学生可以找出他们之间的联系与区别,特殊与一般的关系,从而可以使学生收到触类旁通的效果,

(二)一题多解

一题多解,实质上是发散性思维,也是一种创造性思维,教师若能在授课中引导学生多角度、多途径思考,纵横联想所学知识,以沟通不同部分的数学知识和方法,对提高学生思维能力和探索能力大有好处,防止学生的思维惰性。

例:设a、b、c为△ABC的三条边,求证:a2+b2+c2<2(ab+bc+ca) 除教学参考书中介绍的一种证法外,我们可以引导学生用以下几种方法。 证法1:∵a、b、c为△ABC的三条边 ∴a<b+c b<a+c c<a+b

∴a2+b2+c2<a(b+c)+b(a+c)+c(b+a) 即a2+b2+c2<2(a b+b c+c a) 证法2:∵ a、b、c为△ABC的三条边 ∴∣a-b∣<c a2-2ab+b2<c2

同理b2-2bc+c2<a2 c2-2ca+a2<b2 以上三式相加得

2(a2+b2+c2) -2(ab+bc+ca)<a2+b2+c2 即a2+b2+c2<2(ab+bc+ca) 证法3:据余弦定理:

∴a2+b2-c2<2ab

同理a2+b2-c2<2bc a2+b2-c2<2ca 以上三式相加得:

a 2+b2+c2<2(ab+bc+ca) 方法4:构造以a+b+c为边长的正方形,在此大正方形内分别作边长为a、b、c的小正方形各两个(右图中阴影部分) 显然大正方形面积大于6个小正方形的面积和 即(a+b+c) 2>2(a2+b2+c2) 即∴a2+b2+c2+2ab+2ac>2a2+2b2+2c2 ∴a2+b2+c2<2(ab+bc+ca) 通过一题多解的训练,不仅能开阔学生的视野,拓宽思路,而且可以加强了知识的纵向发展和横向联系,可以沟通代数、几何、三角各个方面的知识,克服学生单向思维的定势,使学生感受到数学美的存在,真正体验到“题小天地大,勤思办法多”的乐趣,从而培养了学生创新思维的能力。

(三)一题多变

2 “变题” 即改变原来例题中的某些条件或结论,使之成为一个新例题.这种新例题是由原来例题改编而来的,称之为“变题”. “变题”已经成为中学数学教学中的热点,每年的“高考”试题中都有一些“似曾相识题”,这种“似曾相识题”实际上就是“变题”

例:已知双曲线两个焦点的坐标为F1(-5,0)F2(5,0)双曲线上一点P到F

1、F2的距离的差的绝对值等于6,求双曲线的标准方程。

解:因为双曲线的焦点在X轴上,所以设它的标准方程为 b2x2-a2y2=a2b2(a>0,b>0) ∵a=3,c=5 ∴b2=52-32=16 所以所求的双曲线的标准方程为16x2-9y2=144 本题是在已知坐标系下,根据双曲线的定义解决的,而双曲线上任意一点,(顶点除外)与两焦点連线均形成一个三角形,因而我们可将问题与三角形联系起来,把题设条件作如下改变。

变题1:在△ABC中,已知│BC│=10且∣AB∣-∣AC∣的绝对值等于6,求顶点A的轨迹方程

解:以BC所在直线为X轴,BC的中垂线为Y轴,建立直角坐标系 设A点坐标为(x,y)(y≠0),则

││AB│-│AC││=6 a=3 c=5 则b2 =c2-a2 =16 故所求的双曲线方程为16x2 –9y2=144(y≠0) 在变题1的基础上,再将题设条件与方程有关知识联系起来,可以得到相应的变式如下: 变题2:在△ABC中,a.b.c是角A.B.C所对的边,a=10,且方程x2 –(b-c)x=9=0有两个相等的实数根,求△ABC的顶点A的轨迹方程。

变题3:在△ABC中,a.b.c是角A.B.C所对的边,a=10, 且│Sin B-SinC│=3/5SinA 求顶点A的轨迹方程

上面几种变式是将双曲线的定义与三角形、二次方程的知识有机结合而形成的,如将其与平面几何知识结合,则又有相应的变式:

变题4 :已知动圆P与定圆F1:x2 +y2+10x+16=0 F2:x2 +y2-10x-56=0都内切,且圆F

1、圆F2都在圆P内,求点P的轨迹方程。

解:已知定圆F1:x2 +y2+10x+16=0 圆心F1(-5,0),半径 r1=3 定圆F2:x2 +y2-10x-56=0 圆心F2(5,0),半径 r2=9 则│F1 F2│=10 设动圆P与圆F1、F2都分别相切于A.B,则

│PF1 │-│PF2 │=(│PA│-│F1 A│)- (│PB│-│F2 B│)= │F2 B│ -│ F1 A│ =9-3 =6

∴点P的轨迹是以F1 F2为焦点的双曲线的右支 ∵2a=6,2c=10, b2 =c2-a2 =16 ∴点P的轨迹方程为16x2 –9y2=144(x≥3) 将此题与2001年高考题第14题:双曲线16x2 –9y2=144的两个焦点F1、F2点,点P在双曲线上,若P F1⊥PF2则点P到X轴的距离为____,进行组合可得一个综合性问题:

22变题5:已知双曲线16x –9y=144的右支上有一点P,F1、F2分别为左、右两焦点,∠F1PF2=θ,S△F1PF2=S (1)若已知∣PF1∣·∣PF2∣=32试求θ (2)S=16试求θ

(3)设△F1PF2为钝角三角形,求S的取值范围

由上述例题可见,一题多变,由浅而深,由易入难,学生们的课堂气氛紧张而又活跃。在平时的教学中,可以说有较多的题型都可以创改,如条件的改变、结论的延伸、语言的变化等等。若能充分挖掘例、习题的潜在功能,定能提高学生综合应用知识能力及解题的技巧和能力,培养学生思维的深刻性、广阔性、灵活性,减轻学生学习负担。

3 (四)多题一解:

平时常碰到一些题目,表面上看相互各异,但实质上结构却是相同,因而它们可用同一种方法去解答。让学生训练这样的题组,可使他们不迷恋表面现象,而是透表求里,自觉地注意到从本质上看问题,必然导致思维向深刻性发展。 题1:已知是等腰三角形BCD的底边CD的延长线上一点,求证 :AC·AD=AB2-BC2

分析:在△ABC和△ABD中由余弦定理 BC2=AB2+AC2-2AB·AC·cosA BD2=AB2+AD2-2AB·AD·cosA ∵BC=BD ∴AC、AD是方程x2-(2AB·cosA )+AB2-BC2=0的两个根,据韦达定理知AC·AD=AB2-BC2

题二:设P是正△ABC外接圆弧上

任意一点

求证:PB+PC=PA PBPC=PA2-PB2 分析:∵∠BPA=∠APC=60º 在△ABP和△APC中,由余弦定理知

AB2=PA2+PB2-2PA·PB·cos60º AC2=PA2+PC2-2PA·PC·cos60º

∵AB=AC∴知PB、PC是方程x2-PA·x+PA2-PB2=0的两根椐韦达定理PB+PC=PA PB-PC=PA2-PB2 题三:设P为定角∠BAC的平分线上一点,过A、P两点任作一圆交AB、AC于M、N,求证AM+AN为定值

证明:设∠PAM=∠PAN=a 在△AMP和△ANP中,由余弦定理 PM2=AM2+PA2-2AM·PA·cosa PN2=AN2+PA2-2AN·PA·cosa 由于PM=PN 所以AM、AN是方程x2-(2PA·cosa )x+PA2-PM2=0的两根,由违达定理得: AM+AN=2PA•COSa(定值) 以上三例是用同一种解法,从 实践了从事物之间同与异矛盾的统一中认识事物的本质,因而培养了学生思维的深刻性。

(五)一题多问

在立体几何的教学中,对正方体A B C D-A′B′C′D′提问题,可以有以下九个问题: ① A到CB的距离。

② B与平面AB′C间的距离。 ③ A′D到B′C的距离。 ④ A′B′与AC′间的距离。 ⑤ AB与平面A′CD之间的距离。 ⑥ AC与A′D所成角的大小。

⑦ AB与平面AB′C所成角的大小。

⑧ 截面A C C′A′与B D D′B′所成角的大小。 ⑨ 面AB′C与平面A′B′C所成角的大小。

结果,引起学生热烈的讨论,课堂气氛活跃。象这样的变式训练,符合学生的认识规律,

4 既可以培养学生思维的灵活性、深刻性,又提高了课堂教学效率,增大了课堂教学容量。 教学实践表明,利用以上方法,进行多变、多问、多解、多用相结合的教学方法,符合学生的认识规律,可以提高学生的学习热情,激发学生的学习兴趣,充分调动学生的学习积极性和主动性。变式训练,避免学生死记硬背,培养举一反三的能力,帮助学生走出题海战术,减轻学生的负担。更重要的是,长期的变式训练,可以提高学生的数学思维品质,提高学生理解、探索和应用的能力,对学生今后独立工作习惯的形成有很大的益处。

变式教学

浅谈乡村中学数学教学变式训练开题论证报告

变式教学释义

中学数学教学设计

参与式教学在中学数学课堂教学中的作用

谈初中数学教学中的变式教学

变式教学在初中教学中的应用

初中数学教学中的变式训练教学

初中数学教学中变式训练分析

变式朗读 犊中感悟教学案例

《中学数学中变式教学的设计.doc》
中学数学中变式教学的设计
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载全文