奥氏体不锈钢的焊接 总结

2020-03-02 18:20:30 来源:范文大全收藏下载本文

一、γ -SS的焊接 接头耐蚀性 1.晶间腐蚀

18-8钢焊接接头有三个部位能出现晶间腐蚀,如图4-3所示。在同一个接头并不能同时看到这三种晶间腐蚀的出现,这取决于钢和焊缝的成分。出现敏化区腐蚀就不会有熔合区腐蚀。焊缝区的腐蚀主要决定于焊接材料。正常情况下,现代技术水平可保证焊缝区不会产生晶间腐蚀。

⑴晶间腐蚀——接头不同位置晶间腐蚀——“贫Cr”现象

焊缝区: 通过焊接材料,使焊缝金属或者成为超低碳情况,或者含有足够的稳定化元素Nb(因Ti不易过渡到焊缝中而不采用Ti),一般希望wNb≥8wC或wNb≈1%。

调整焊缝成分以获得一定数量的铁素体δ相。

HAZ敏化区: HAZ敏化区晶间腐蚀是指焊接热影响区中加热峰值温度处于敏化加热区间的部位(故称敏化区)所发生的晶间腐蚀。

只有18-8钢才会有敏化区存在,含Ti或Nb的18-8Ti或18-8Nb,以及超低碳18-8钢不易有敏化区出现。

对于wC=0.05%和0Cr18Ni9不锈钢来说,Cr23C6的析出温度为600~850℃,TiC的则高达1100℃,快冷可避免。

熔合区(刀状): 在熔合区产生的晶间腐蚀,有如刀削切口形式,故称为“刀状腐蚀” ,简称刀蚀。腐蚀区宽度初期不超过3~5个晶粒,逐步扩展到1.0~1.5mm。

只有含Nb或Ti的钢的熔合区才会产生晶间腐蚀。

原因:“贫Cr”现象

2.应力腐蚀SCC (1)腐蚀介质的影响:

应力腐蚀的最大特点之一是腐蚀介质与材料组合上的选择性,在此特定组合之外不会产生应力腐蚀。如在Cl-的环境中,18-8不锈钢的应力腐蚀不仅与溶液中Cl-离子有关,而且还与其溶液中氧含量有关。 Cl-离子浓度很高、氧含量较少或Cl-离子浓度较低、氧含量较高时,均不会引起应力腐蚀。

(2)焊接应力的作用:

应力腐蚀开裂的拉应力,来源于焊接残余应力的超过30%。焊接拉应力越大,越易发生应力腐蚀开裂。在含氯化物介质中,引起奥氏体钢SCC的临界拉应力σth≈σs。在高温高压水中,引起奥氏体钢SCC的σth< < σs;而在H2SχO6介质中,由于晶间腐蚀领先,应力则起到了加速作用,此时可认为σth≈0。(防SCC根本上是退火消应力,T,t)

(3) 合金元素的作用

应力腐蚀开裂大多发生在合金中,在晶界上的合金元素偏析引起合金晶间开裂是应力腐蚀的主要因素之一。对于焊缝金属,选择焊接材料具有重要意义。

综上所述,引起应力腐蚀开裂须具备三个条件:首先是金属在该环境中具有应力腐蚀开裂的倾向;其次是由这种材质组成的结构接触或处于选择性的腐蚀介质中;最后是有高于一定水平的拉应力。

3.点蚀

奥氏体钢焊接接头有点蚀倾向,其实即使耐点蚀性优异的双相钢有时也会有点蚀产生。点蚀指数PI(PI=WCr+3.3WMo+(13~16)WN)越小,点蚀倾向越大。

最容易产生点蚀的部位是焊缝中的不完全混合区,其化学成分与母材相同,但却经历了熔化与凝固过程,应属焊缝的一部分。焊接材料选择不当时,焊缝中心部位也会有点蚀产生,其主要原因应归结为耐点蚀成分Cr与Mo的偏析。

例如,奥氏体钢Cr22Ni25Mo中Mo的质量分数为3%~12%,在钨极氩弧焊(TIG)时,枝晶晶界Mo量与其晶轴Mo量之比(即偏析度)达1.6,Cr偏析度达1.25。因而晶轴负偏析部位易于产生点蚀。总之,TIG自熔焊接所形成的焊缝均易形成点蚀,甚至填送同质焊丝时也是如此,仍不如母材。为提高耐点蚀性能,一方面须减少Cr、Mo的偏析;一方面采用较母材更高Cr、Mo含量的所谓“超合金化”焊接材料。提高Ni含量,晶轴中Cr、Mo的负偏析显著减少,因此采用高Ni焊丝应该有利。

由此可以得出结论:

1.为提高耐点蚀性能而不能进行自熔焊接; 2.焊接材料与母材必须“超合金化”匹配;

3.必须考虑母材的稀释作用,以保证足够的合金含量;

4.提高Ni量有利于减少微观偏析,必要时可考虑采用Ni基合金焊丝

二. 热裂

1.奥氏体钢焊接时,在焊缝及近缝区都有产生裂纹的可能性,主要是热裂纹。最常见的是焊缝结晶裂纹。HAZ近缝区的热裂纹大多是所谓液化裂纹。在大厚度焊件中也有时见到焊道下裂纹

奥氏体钢焊接热裂纹的原因:

(1)奥氏体钢的热导率小和线膨胀系数大,在焊接局部加热和冷却条件下,接头在冷却过程中可形成较大的拉应力。焊缝金属凝固期间存在较大拉应力是产生热裂纹的必要条件。 (2)奥氏体钢易于联生结晶形成方向性强的柱状晶的焊缝组织,有利于有害杂质偏析,而促使形成晶间液膜,显然易于促使产生凝固裂纹。

(3)奥氏体钢及焊缝的合金组成较复杂,不仅S、P、Sn、Sb之类杂质可形成易溶液膜,一些合金元素因溶解度有限(如Si、Nb),也能形成易溶共晶,如硅化物共晶、铌化物共晶。这样,焊缝及近缝区都可能产生热裂纹。

2.凝固模式对热裂纹的影响

凝固裂纹最易产生于单相奥氏体(γ)组织的焊缝中,如果为γ+δ双相组织,则不易于产生凝固裂纹。通常用室温下焊缝中δ相数量来判断热裂倾向。如图4-13所示,室温δ铁素体数量由0%增至100%,热裂倾向与脆性温度区间(BTR)大小完全对应。这说明用室温δ相数量做判据是可以说明问题的。

凝固裂纹产生于真实固相线之上的凝固过程后期,必须联系凝固模式来进行考虑。图4-14为Fe-Cr-Ni三元合金一个70%Fe的伪二元相图。图中标出的虚线①合金,其室温平衡组织为单相γ,实际冷却得到的室温组织可能含5%~10%δ相。但凝固开始到结束都是单相δ相组织,只是在继续冷却时,由于发生δ→γ相变,δ数量越来越少,在平衡条件下直至为零。

晶粒润湿理论指出,偏析液膜能够润湿γ-γ、δ-δ界面,不能润湿γ-δ异相界面。以FA模式形成的δ铁素体呈蠕虫状,防碍γ枝晶支脉发展,构成理想的γ-δ界面,因而不会有热裂倾向。凝固裂纹与凝固模式有直接关系。单纯F或A模式凝固时,只有γ-γ或δ-δ界面,所以会有热裂倾向。以AF模式凝固时,由于是通过包晶/共晶反应面形成γ+δ,这种共晶δ不足以构成理想的γ-δ界面,所以仍然可以呈现液膜润湿现象,以至还会有一定的热裂倾向。

3.化学成分对热裂纹的影响

任何钢种都是一个复杂的合金系统,某一元素单独作用和其他元素共存时发生的作用,往往不尽相同,甚至可能相反。

1)Mn:

在单相奥氏体钢中Mn的作用有利,但若同时存在Cu时,Mn与Cu可以相互促进偏析,晶界易于出现偏析液膜而增大热裂倾向。

2)S、P: S、P在焊接奥氏体钢时极易形成低熔点化合物,增加焊接接头的热裂倾向。在焊缝中,硫对热裂的敏感性比磷弱,这是因为在焊缝中硫形成MnS,熔点比Ni3P2高,且离散地分布在焊缝中。在HAZ中,硫比磷对裂纹敏感性更强,这是因为硫比磷的扩散速度快,更容易在晶界偏析。焊缝中硫、磷的最高质量分数应限制在0.015%以内。

3)Si:Si是铁素体形成元素,焊缝中wSi>4%之后,碳的活动能力增加,形成碳化物或碳氮化合物,为防晶间腐蚀,应使焊缝中C%≤0.02%。

Si在18-8钢中有利于促使产生δ相,可提高抗裂性,可不必过分限制;但在25-20钢中,Si的偏析强烈,易引起热裂。

4)Nb:

铌可与磷、铬及锰一起形成低熔点磷化物,而与硅、铬和锰则可形成低熔点硫化物-氧化物杂质。铌在晶粒边界富集,可形成富铌、镍的低熔点相,其结晶温度甚至低于1160℃。含铌的低熔点相在铁素体和奥氏体中的溶解度不同,从而对热裂影响不同。

5)Ti

钛也可以形成低熔点相,如在1340℃时,焊缝中就可以形成钛碳氮化物的低熔点相。含钛低熔点相的形成对抗裂性的影响不如铌的明显,因为钛与氧有强的结和力,因此钛通常不用于焊缝金属的稳定化,而是用于钢的稳定化。钛主要是对母材及热影响区的液化裂纹的形成有影响。

6)C

碳对于热裂敏感性的影响仅在一次结晶为奥氏体的单相奥氏体化的焊缝金属中,碳对热裂敏感性的影响很复杂,还取决于合金成分。

7)B:

硼是对抗热裂性影响最坏的元素。高温时硼在在奥氏体中的溶解度非常低,只有0.005%,硼与铁、镍都能形成低熔点共晶。因此,要限制焊缝中的硼含量。

总之,凡是溶解度小而能偏析形成易熔共晶的成分,都可能引起热裂纹的产生。凡可无限固溶的成分(如Cu在Ni中)或溶解度大的成分(如Mo、W、V),都不会引起热裂。奥氏体钢焊缝,提高Ni含量时,热裂倾向会增大;而提高Cr含量,对热裂不发生明显影响。在含Ni量低的奥氏体钢加Cu时,焊缝热裂倾向也会增大。凡促使出现A或AF凝固模式的元素,该元素必会增大焊缝的热裂倾向。

4.焊接工艺的影响

在合金成分一定的条件下,焊接工艺对是否会产生热裂纹也有一定影响。

为避免焊缝枝晶粗大和过热区晶粒粗化,以致增大偏析程度,应尽量采用小焊接热输入快速焊工艺,而且不应预热,并降低层间温度。不过,为了减小焊接热输入,不应过分增大焊接速度,而应适当降低焊接电流。增大焊接电流,焊接热裂纹的产生倾向也随之增大。过分提高焊接速度,焊接时反而更易产生热裂纹。这是因为随着焊接速度增大,冷却速度也要增大,于是增大了凝固过程的不平衡性,凝固模式将逐次变化为FA→AF→A,相当于图4-14 中A点向右移动,因此热裂倾向增大。

三、析出现象

在SS中,σ相通常只有在铬的质量分数大于16%时才会析出,由于铬有很高的扩散性,σ相在铁素体中的析出比奥氏体中的快。δ→σ的转变速度与δ相的合金化程度有关,而不单是δ相的数量。凡铁素体化元素均加强δ→σ转变,即被Cr、Mo等浓化了的δ相易于转变析出σ相。

σ相是指一种脆硬而无磁性的金属间化合物相,具有变成分和复杂的晶体结构。σ相的析出使材料的韧性降低,硬度增加。有时还增加了材料的腐蚀敏感性。σ相的产生,是δ→σ或是γ→σ。

四、低温脆化

为了满足低温韧性要求,有时采用18-8钢,焊缝组织希望是单一γ相,成为完全面心立方结构,尽量避免出现δ相。δ相的存在,总是恶化低温韧性。虽然单相γ焊缝低温韧性比较好,但仍不如固溶处理后的1Cr18Ni9Ti钢母材,例如aku(-196℃)≈230J/cm2, aku(20℃)≈280 J/cm2。 “铸态”焊缝中的δ相因形貌不同,可以具有相异的韧性水平。

奥氏体不锈钢的焊接工艺特点

焊接材料选择

不锈钢及耐热钢用焊接材料主要有:药皮焊条、埋弧焊丝和焊剂、TIG和MIG实芯焊丝以及药芯焊丝。焊接材料的选择首先决定于具体焊接方法的选择。在选择具体焊接材料时,至少应注意以下几个问题: 1) 应坚持“适用性原则”。根据不锈钢材质、具体用途和使用条件(工作温度、接触介质),以及对焊缝金属的技术要求选用焊接材料,原则是使焊缝金属的成分与母材相同或相近。

2) 根据所选各焊接材料的具体成分来确定是否适用,并应通过工艺评定试验加以验收,绝不能只根据商品牌号或标准的名义成分就决定取舍。

3) 考虑具体应用的焊接方法和工艺参数可能造成的熔合比大小,即应考虑母材的稀释作用,否则将难以保证焊缝金属的合金化程度。

4) 根据技术条件规定的全面焊接性要求来确定合金化程度,即是采用同质焊接材料,还是超合金化焊接材料。

5) 不仅要重视焊缝金属合金系统,而且要注意具体合金成分在该合金系统中的作用;综合考虑使用性能和工艺焊接性要求。

焊接工艺要点

(1) 合理选择焊接方法 : 不锈钢多采用药芯焊丝电弧焊:效率高,成分可调,热输入小。

(2) 控制焊接参数:避免接头产生过热现象,奥氏钢热导率小,热量不易散失,一般焊接所需的热输入比碳钢低20%~30%。

(3) 接头设计的合理性:仅以坡口角度为例,采用奥氏体钢同质焊接材料时,坡口角度取60°是可行的;但如采用Ni基合金作为焊接材料,由于熔融金属流动更为粘滞,坡口角度取60°很容易发生熔合不良现象。Ni基合金的坡口角度一般均要增大到80°左右。 (4) 控制焊接工艺稳定:保证焊缝金属成分稳定 ,必须保证熔合比稳定。 (5) 控制焊缝成形: 表面成形是否光整,是否有易产生应力集中。

(6) 防止焊件工作表面的污染 : 奥氏体不锈钢焊缝受到污染,其耐蚀性会变差。焊前除油去污,洁净干燥。

奥氏体不锈钢的焊接总结

奥氏体不锈钢和马氏体不锈钢有什么区别

奥氏体不锈钢与马氏体不锈钢的区别

常见不锈钢焊接方法

电焊机焊接不锈钢方法

不锈钢焊接施工方案

SS316不锈钢管道焊接方案

不锈钢焊接要点及注意事项

马氏体不锈钢的焊接工艺

钢材奥氏体

《奥氏体不锈钢的焊接 总结.doc》
奥氏体不锈钢的焊接  总结
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载全文