多元函数

2020-03-03 17:56:23 来源:范文大全收藏下载本文

第二节 多元函数的基本概念

分布图示

★ 领域★平面区域的概念

★ 多元函数的概念★ 例1★ 例

2★ 二元函数的图形

★ 二元函数的极限★ 例3★ 例

4★ 例5★ 例6★ 例7

★ 二元函数的连续性★ 例 8

★ 二元初等函数★ 例 9-10

★ 闭区域上连续函数的性质

★ 内容小结★ 课堂练习

★习题6-2

内容提要:

一、平面区域的概念:内点、外点、边界点、开集、连通集、区域、闭区域

二、多元函数的概念

定义1 设D是平面上的一个非空点集,如果对于D内的任一点(x,y),按照某种法则f,都有唯一确定的实数z与之对应,则称f是D上的二元函数,它在(x,y)处的函数值记为f(x,y),即zf(x,y),其中x,y称为自变量, z称为因变量.点集D称为该函数的定义域,数集{z|zf(x,y),(x,y)D}称为该函数的值域.类似地,可定义三元及三元以上函数.当n2时, n元函数统称为多元函数.二元函数的几何意义

三、二元函数的极限

定义2 设函数zf(x,y)在点P0(x0,y0)的某一去心邻域内有定义,如果当点P(x,y)无限趋于点P0(x0,y0)时,函数f(x,y)无限趋于一个常数A,则称A为函数zf(x,y)当(x,y) (x0,y0)时的极限.记为

xx0yy0limf(x,y)A.或f(x,y)A ((x,y)(x0,y0))

也记作

limf(P)A或f(P)A (PP0) PP0

二元函数的极限与一元函数的极限具有相同的性质和运算法则,在此不再详述.为了区别于一元函数的极限,我们称二元函数的极限为二重极限.

四、二元函数的连续性

定义3 设二元函数zf(x,y)在点(x0,y0)的某一邻域内有定义,如果

xx0yy0limf(x,y)f(x0,y0),

则称zf(x,y)在点(x0,y0)处连续.如果函数zf(x,y)在点(x0,y0)处不连续,则称函数zf(x,y)在(x0,y0)处间断.

与一元函数类似,二元连续函数经过四则运算和复合运算后仍为二元连续函数.由x和y的基本初等函数经过有限次的四则运算和复合所构成的可用一个式子表示的二元函数称为二元初等函数.一切二元初等函数在其定义区域内是连续的.这里定义区域是指包含在定义域内的区域或闭区域.利用这个结论,当要求某个二元初等函数在其定义区域内一点的极限时,只要算出函数在该点的函数值即可.

特别地,在有界闭区域D上连续的二元函数也有类似于一元连续函数在闭区间上所满足的定理.下面我们不加证明地列出这些定理.

定理1(最大值和最小值定理) 在有界闭区域D上的二元连续函数, 在D上至少取得它的最大值和最小值各一次.

定理2(有界性定理)在有界闭区域D上的二元连续函数在D上一定有界.

定理3(介值定理)在有界闭区域D上的二元连续函数, 若在D上取得两个不同的函数值, 则它在D上取得介于这两值之间的任何值至少一次.

例题选讲:

多元函数的概念

例1某公司的总成本(以千元计)为

C(x,y,z,w)5x4y2zln(w1)

其中x是员工工资,y是原料的开销,z是广告宣传的开销,w是机器的开销.求2C(2,3,0,10).

解 用2替换x,3替换y,0替换z,10替换w,

则C(2,3,0,10)52430ln(101)

29.6(千元)。

例2(E02)求二元函数f(x,y)2arcsin(3x2y2)

xy2的定义域.

223xy1解 2xy0

2x2y24 2xy

所求定义域为D

{(x,y)|2x2y24,xy2}.

例3(E03)已知函数f(xy,xy)解设uxy,vxy,则 x2y2x2y2, 求f(x,y).

xuvuv,y, 22

22uvuv2uv22故得f(u,v), 2222uvuvuv22

即有f(x,y)2xy.x2y2

二元函数的极限

例4(E04)求极限 lim(x2y2)sinx0y01.22xy

解令ux2y2,则

lim(x2y2)sinx0

y011=0.limusin22u0uxy

例5 求极限limx0

y0sin(x2y)xy22.

22sinx(y)sinx(y)x2ysin(x2y)sinu2uxy1, 22, 其中lim解li22li2limx0x0xyx0u0uxyxyx2yy0y0y0x2y

x2y212xy1xx2x2y22x00, sin(x2y)所以lim220.x0xyy0

例6求极限 limxy.xx2y2

y

解当xy0时,

0xyxy11xy0(x,y), 2y2x2xyx2y2x2y2

所以limxy

x0.

yx2y2

例7(E05)证明limxy

x0x2y2不存在.y0

证取ykx(k为常数),则

limxy

x0x2y2limxkxk

x02,

y0ykxx2k2x21k易见题设极限的值随k的变化而变化,故题设极限不存在.

例8 证明limx3y

x06不存在.y0xy2

证取ykx3,limx3y

x0x6y2limx3kx3k

x0x62,其值随k的不同而变化,

y0ykx3k2x61k

限不存在.

二元函数的连续性

x3y3

例9讨论二元函数f(x,y)x2y2,(x,y)(0,0)在(0,0)处的连续性.

0,(x,y)(0,0)

解由f(x,y)表达式的特征,利用极坐标变换: 令xcos,ysin,则

(x,ylim)(0,0)f(x,y)lim0(sin3cos3)0f(0,0), 所以函数在(0,0)点处连续.

例10(E06)求limln(yx)y

x0.

y1x2

解l

xi0mlny(x)y11.y1xln1(0)02

例11求limexy

x0xy.y1故极

exye01exy2.解因初等函数f(x,y)在(0,1)处连续,故limx0xy01xy

y1

课堂练习

y1.设fxy,x2y2, 求f(x,y).x

2.若点(x,y)沿着无数多条平面曲线趋向于点(x0,y0)时, 函数f(x,y)都趋向于A, 能否断定

(x,y)(x0,y0)limf(x,y)A? xy2

,x2y20243.讨论函数f(x,y)xy的连续性.2xy200,

多元函数微分学

第五章多元函数微积分

多元函数微分学复习

多元函数的极限

多元函数的泰勒公式

多元函数的基本概念教案

多元向量值函数积分自测题

考研高数 多元函数(版)

02 第二节 多元函数的基本概念

多元函数的极限与连续

《多元函数.doc》
多元函数
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载全文