中值定理超强总结

2020-03-02 20:20:49 来源:范文大全收藏下载本文

咪咪原创,转载请注明,谢谢!

1、所证式仅与ξ相关 ①观察法与凑方法

例 1 设f(x)在[0,1]上二阶可导,f(0)f(1)f(0)0 试证至少存在一点(a,b)使得f()2f()1分析:把要证的式子中的  换成 x,整理得f(x)xf(x)2f(x)0(1) 由这个式可知要构造的函数中必含有f(x),从xf(x) 找突破口 因为[xf(x)]xf(x)f(x),那么把(1)式变一下: f(x)f(x)[xf(x)f(x)]0f(x)f(x)[xf(x)]0 这时要构造的函数就看出来了F(x)(1x)f(x)f(x)②原函数法

例 2 设f(x)在[a,b]上连续,在(a,b) 内可导,f(a)f(b)0,又g(x)在[a,b]上连续 求证:(a,b)使得f()g()f()分析:这时不论观察还是凑都不容易找出要构造的函数,于是换一种方法 现在把与f 有关的放一边,与 g 有关的放另一边,同样把  换成 x g(x)dx

f(x)f(x)两边积分g(x) lnf(x)g(x)dxlnCf(x)Ce f(x)eg(x)dxC 现在设C0,于是要构造的函数就很明显了 F(x)f(x)e③一阶线性齐次方程解法的变形法 g(x)dx对于所证式为fpf0型,(其中p为常数或x 的函数)pdxpdx可引进函数u (x)e,则可构造新函数F(x)fe例:设f(x)在[a,b]有连续的导数,又存在c(a,b),使得f(c)0 求证:存在(a,b),使得f()分析:把所证式整理一下可得:f() [f()f(a)]1ba1f()f(a)baf()f(a)ba0[f()f(a)]0,这样就变成了fpf0型xx--badx 引进函数u (x)e=eba (令C=0),于是就可以设F(x)eba[f(x)f(a)] 注:此题在证明时会用到f(c)f(b)f(a)ba0f(b)f(a) 这个结论

2、所证式中出现两端点 ①凑拉格朗日

咪咪原创,转载请注明,谢谢!

例 3 设f(x)在[a,b]上连续,在(a,b)内可导 证明至少存在一点(a,b)使得bf(b)af(a)baf()f()

分析:很容易就找到要证的式子的特点,那么下可以试一下,不妨设 F(x)xf(x),用拉格朗日定理验证一 F()f()f()bf(b)af(a)ba(x1,x2)至少存在一点②柯西定理

例 4 设0x1x2,f(x)在[x1,x2]可导,证明在 1c,使得ex2x1ex2ex1f(c)f(c)ef(x1)f(x2)xx2x2分析:先整理一下要证的式子e1f(x2)eex1f(x1)f(c)f(c)e 这题就没上面那道那么 发现e1f(x2)exx2容易看出来了分子分母同除一下

f(x1)是交叉的,变换一下,ex1x2f(x2) ex2f(x1)e1x11x2于是这个式子一下变得没有悬念了eex1 用柯西定理设好两个函③k值法

仍是上题数就很容易证明了分析:对于数四,如果对柯西定理掌握的不是方法叫做k 值法很好上面那题该怎么办呢? 在老陈的书里讲了一个 第一步是要把含变量与 以此题为例已经是规范 设常量的式子分写在等号的形式了,现在就看常k 整理得ex1两边量的这个式子x2

ex1f(x2)eex1x2x2f(x1)e[f(x1)k]e[f(x2)k] 很容易看出这是一个对 那么进入第二步,设称式,也是说互换x1x2还是一样的F(x1)F(x2)F(x)ex[f(x)k],验证可知。 记得回带k,用罗尔定理证明即可④泰勒公式法

老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。

3、所证试同时出现ξ和η ①两次中值定理

咪咪原创,转载请注明,谢谢!

例 5 f(x)在[a,b]上连续,在(a,b) 内可导,f(a)f(b)1 试证存在,(0,1)使得e[f()f()]1分析:首先把与分开,那么就有e[f()f()]e 一下子看不出来什么, 很容易看出那么可以先从左边的式子下手试一下xe[f()f()][ef()],设F(x)ef(x) 利用拉格朗日定理可得F()eaef(b)ef(a)baexbba

再整理一下 e[f()f()]ebbaa只要找到eaba与e的关系就行了得到 这个更容易看出来了, G()e令G(x)e则再用拉格朗日定理就e[f()f()]ba②柯西定理(与之前所举例类似)

有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。 ebe

高等数学中值定理总结

三大中值定理

【考研数学】中值定理总结

中值定理题目分析总结答案

有关中值定理的证明题

第一讲 微分中值定理

高等数学 极限与中值定理 应用

微分中值定理的证明题[1]

考研数学 中值定理证明题技巧

高等数学考研大总结之五 微分中值定理

《中值定理超强总结.doc》
中值定理超强总结
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载全文