二重极限的计算方法(学年论文)

2020-03-03 00:59:15 来源:范文大全收藏下载本文

二重极限的计算方法小结

内 容 摘 要

本文在二元函数定义基础上通过求对数,变量代换等方式总结了解决二重极限问题的几种方法,并给出相关例题及解题步骤。及二重极限不存在的几种证明方法。

关键词:二重极限 变量代换等 不存在的证明

目 录

序言„„„„„„„„„„„„„„„„„„„„„„„„„„„

1一、利用特殊路径猜得极限值再加以验证………„„„„„„1 (一) 利用特殊路径猜得极限值再加以确定„„„„„„„„ 1 (二) 由累次极限猜想极限值再加以验证„„„„„„„„„„2 (三) 采用对数法求极限„„„„„„„„„„„„„„„„„2 (四) 利用一元函数中重要的极限的推广求两个重要极限„„„3 (五) 等价无穷小代换„„„„„„„„„„„„„„„„„„3 (六) 利用无穷小量与有界函数的积仍为无穷小量„„„„„„4 (七) 多元函数收敛判别方法„„„„„„„„„„„„„„„4 (八) 变量代换将二重极限化为一元函数中的已知极限„„„„5 (九) 极坐标代换法„„„„„„„„„„„„„„„„„„„6 (十) 用多元函数收敛判别的方法„„„„„„„„„„„„„7

二、证明二重极限不存在的几种方法………………………………… 7 总结„„„„„„„„„„„„„„„„„„„„„„„„„„10 参考文献„„„„„„„„„„„„„„„„„„„„„„„„11 I

序言

二元函数的极限是在一元函数极限的基础上发展起来的,二者之间既有联系又有区别。对一元函数而言,自变量的变化只有左右两种方式,而二元函数可以有无数种沿曲线趋于某店的方式,这是两者最大的区别。虽然二元函数的极限较为复杂,但若能在理解好概念,掌握解题方法和技巧就不难解决。

对于二元函数的二重极限,重点是极限的存在性及其求解方法。二重极限实质上是包含任意方向的逼近过程,是一个较为复杂的极限,只要有两个方向的极限不相等,就能确定二重极限不存在,但要确定二重极限存在则需要判定沿任意方向的极限都存在且相等。由于二重极限较为复杂,判定极限的存在及其求解,往往因题而异,依据变量(x,y)的不同变化趋势和函数f(x,y)的不同类型,探索得出一些计算方法,采用恰当的求解方法后,对复杂的二重极限计算,就能简便,快捷地获得结果,本文将对二重极限的几种计算方法做一下小结。

一、二重极限的计算方法小结

(一) 利用特殊路径猜得极限值再加以验证

利用二元函数极限定义求极限:根据定义解题时只需找出来。

x3y例1 讨论f(x,y)2,在点的极限。

xy2[1]解 令ymx

x0ymxlimx3ymx4m2limlimx0

x2y2x0ymx(1m2)x01m2x3y应为此路径为特殊路径,故不能说明lim0.可以猜测值为0。

x0y0x2y2下面再利用定义法证明:0,取2

当0(x0)2(y0)2 有x2x2y22

1

x3yx3y12x3y12由于2 即有0xx 2222xy22xyxyx3y故lim0.x0y0x2y2注意 (1)的任意性

(2)一般随而变化

(3)若函数以A为极限,则对函数在的某去心邻域内有范围(A+,A-)。

(二) 由累次极限猜想极限值再加以验证

先求出一个累次极限,该类此极限是否为二重极限在用定义验证 例2[2] 设f(x,y)(xy)sin221(x2y20)。求limf(x,y) 22x0y0xy解 limlimf(x,y)0可以猜测有极限值为0.事实上对任意的(x,y)(0,0)

x0y0有f(x,y)0(xy)sin2212222xyxy, 22xy0 取, 当x,y,(x,y)(0,0)时,

2就有(x2y2)sin10,即有limf(x,y)0 22x0y0xy(三) 采用对数法求极限

利用初等变形,特别是指数形式常常可以先求起对数的极限。或极限是等未定型,往往通过取对数的办法求得结果。

例3 求 解

1sinxyx0y0lim(1xy)(1xy)

1sinxy1xyxysinxyx0y0lim1sinxyx0y0limeln(1xy)x0y0limeln(1xy)

1xy 因为

xyxyln(1xy)lne1 1而且limx0y0sinxy1x0y0lim 所以

1sinxyx0y0lim(1xy)e

2

(四) 利用一元函数中重要极限的推广求两个重要极限

1 lim1lim(1x)xe xx0xsinx

1limx0x类似于一元函数,我们可以充分利用所熟知的结论。通过构造变形我们能够化不熟悉为熟悉,进而利用已有的结论而求之

例4[3]x1 求(1)lim(1x)x0y01x(xy) (2)limsinxy

x0yax解 (1)因为

lim(1x)e,limx01x11

x0y2xy2 所以

1x(xy)1xyx0y2lim(1x)lim(1x)x0y21xe

12 (2) 由于

又因为

sinxysinxyy,y0, xxysinxysintlin1(xyt,x0)

x0yat0txylim 所以

sinxysintlinlinya

x0yat0yxtalim(五) 等价无穷小代换

利用一元函数中已有的结论对式子进行必要的代换以达到简化的目的,进而求出所要求的极限

33例5 求limsin(xy)

x0y0xy33 解 因为x0,y0,故有xy0

所以sin(x3y3)等价于x3y3

3333故原式为limsin(xy)limxylim(x2xyy2)0

x0y0x0y0x0y0xyxy注 无穷小替代求极限时要理解替换过程的本质,不可随意替换。利用等价无穷小替代求极限其实质就是在极限运算中同时乘一个或是除一个等价无穷小,也就是我们通常所说的“乘除时可以替换,加减时不可随意替换”

(六) 利用无穷小量与有界函数的积仍为无穷小量

充分利用无穷小的性质,与一元函数类似,在求极限过程中,以零为极限的量称为无穷小量,有关无穷小量的运算性质也可以推广到多元函数中。

例6[4]2x3y2 求 lim

x3,y2x32y22 解 因为

2x3y2limx3,y2x32y22limx3y2x3

x3,y2x32y22而

x3y2x32y22又 limx3,y21为有界变量 2x30 故有 原式=0 (七) 多元函数收敛判别方法

当一个二重极限不易直接求出时,可以考虑通过放缩法使二元函数夹在两个已知极限的函数之间,且两端的极限值相等,则原函数的极限值存在且等于它们的公共值。

例7[5] 求 limxx0y0y2

xy2解 因为

x0而

y2x2y2x2y2xy

xyxyxyxy2x0y0limxy0,故

x0y0limxy2

xy2

(八) 变量代换将二重极限化为一元函数中的已知极限

有时为了将所求的极限化简,转化为已知的极限,可以根据极限式子的特点,适当引入新变量,以替换原有的变量,使原来较复杂的极限过程转化为更简化的极限过程。

1、讨论当x0,y0,二元函数f(x,y)的极限,利用变量代换把二重极限化为一元函数中已知的极限转化,相应有t0从而求得结果。

ln(1x2y2)例8 求 lim 22x0,y0xy解 令x2y2, 则当x0,y0时 0,

22ln(1xy)ln(1)于是limlim1 22x0,y00xy

2、讨论当x,yaa0常数时,二元函数f(x,y)的极限,作变量代换,相应有t,利用已知一元函数的极限公式。

例9 求 lim1xyaxy解 因为

x2xy1其中a0

11xyx2xy11xyxxy(xy)y

当 x,ya时,令xy=t,相应有t 则

1lim1xyaxy

所以

xy1lim1e ttt1lim1xyaxyx2xyxyalimex1xyln(1)(xy)yxye1a

3、讨论x,y时二元函数f(x,y)的极限

例10 求 解 因为 x,ylim(x2y2)e(xy)

(xy)e22(xy)(x2y2)(xy)2xy2 (xy)(xy)(xy)eee当 x,y时,令x+y=t,相应有t

(xy)2t2则 limlimt0

x,ye(xy)tex,ylim2xyxy2limlim0 xyxyx,yx,yeeee所以

x,ylim(x2y2)e(xy)0

(九) 极坐标代换法

讨论当x,y0,0时,二元函数f(x,y)的极限,必要时可以用极坐标变换

xrcos,yrsin,即将求f(x,y)当极限问题变换为f(rcos,rsin)求r0的极

限问题。但必须要求在r0的过程中与的取值无关。注意这里不仅对任何固定的在r0时的极限与无关,而且要求在r0过程中可以随r的改变而取不同的值的情况下仍然无关,才能说明lim[6]x0,y0f(x,y)存在。

x2y2例11 求lim

(x,y)(0,0)x2y2解 令

xrcos,当(x,y)(0,0)时,有r0 yrsin令

x2y2r4cos2sin2r2cos2sin2 222xxr22因为 cossin1

所以

x2y2222limlimrcossin0 (x,y)(0,0)x2y2r0

(十) 用多元函数收敛判别的方法

通过缩放法使二元函数夹在两个已知极限的函数之间,再利用两边夹定理来推出结果。

x2y2例12 求 lim

x0y0xy 解 因为

x2y2xy0xy xyxy2而 limx0y0xy0

22xy 所以 lim0

x0y0xy

二、证明二重极限不存在

若二元函数f(p)在区域D有定义,p0(x0,y0)是D的聚点。当动点p(x,y)沿着两条不同的曲线(或点列)诬陷趋近于点p0(x0,y0),二元函数f(p),有不同的“极限”,则二元函数f(p)在点p0(x0,y0)不存在极限。依此可以有下面几种方法来证明f(p)在区域D上当pp0时极限不存在。

例1[7] 证明x0y0limln(xey)x2y2不存在

y22证明 函数的定义域为D(x,y)xe,xy0,当点p(x,y)沿着y

轴趋于点(0,0)时,有x=0,而

x0y0limln(xey)x2y2limy0y不存在, y所以

x0y0limln(xey)xy22

当P沿着D中某一连续曲线趋近于点p0(x0,y0)时,二元函数f(p)的极限不存在,则(x,y(x0,y0)limf(x,y)不存在

7

例2 证明x0y0limx4y4不存在

xy证明 函数的定义域为D(x,y)xy0,当点p(x,y)沿着x轴趋于点(0,

x4y40)时,lim=0,当点p(x,y)沿着yx(x31)趋于点(0,0)时x0y0xyx4y4x4x4(x31)limlim2 4x0x0xyx所以

x0y0limx4y4不存在

xy当P沿着D中两条不同的连续曲线趋近于p0(x0,y0)时,二元函数f(p)的极限都存在,但不相等,则(x,y(x0,y0)limf(x,y)不存在。

x2y2不存在 33xy例3 证明

x0y0lim证明 设xrcos,yrsin函数的定义域为

33 D(r,)r0,cossin0,0,2



x0y0limx2y2x3y3xlim(r,)D0rcos2sin2 cos3sin3rcos2sin2当0时,sin0得lim0 33x0cossin(r,)D当(331 )时cos3sin30,cos2sin2443令cossinr有

x0cos3sin3rlimrcos2sin210

cos3sin34所以

x0y0limx2y2 不存在

x3y3对于一些难以找到的路线,可以利用极坐标来证明 例4[8] 证明 limx0y0x2y2不存在 22x2yx2y2x3证明 limlimf(x,y)limlim2lim2limx0

x0y0x0y0xx0xx02y2x2y2y211 limlimf(x,y)limlim2limlimx0y0x0y0x2y2y02y2y022

即得

x0y0limx2y2x2y2 limlim2222x0y0x2yx2yx0y0因为两个累次极限不想等,所以

limx2y2 不存在 22x2y总结

函数极限是数学分析中非常重要的内容,也是比较难理解和掌握的部分,特别是二元函数的极限,但二元函数在多元函数微积分学中有着举足轻重的作用,探讨其存在性与求法是进一步学习多元函数微积分有关概念和方法的基础。文中列出了利用特殊路径猜得极限值再加以确定、由累次极限猜想极限值再加以验证、采用对数法求极限、利用一元函数中重要的极限的推广求两个重要极限、等价无穷小代换、利用无穷小量与有界函数的积仍为无穷小量、多元函数收敛判别方法、变量代换将二重极限化为一元函数中的已知极限、极坐标代换法、用多元函数收敛判别的方法等始终二重极限的计算方法及四种二重极限不存在的证明方法。在实际解决二重极限问题时要根据题型不同选择最优的解题方式,不但能提高正确率也可以节省时间和工作量,达到事半功倍的效果。

参考文献

[1]孙涛.数学分析经典习题解析[M].北京:高等教育出版社,2004.[2]张贵文,汪明凡.关于多元函数的极限[J].数学学习,1983.[3]华东师范大学数学系.数学分析.下册(第三版)[M].北京:高等教育出版社,2001.[4]同济大学应用数学系.高等数学(下册)(五版)[M].北京:高等教育出版社,2002.[5]阎家灏.正项级数敛散性的一种审敛[J].兰州工业高等专科学校学报,2004.[6]阎家灏.用极坐标变换确定二重极限的技巧及实例[J].兰州工业高等专科学校学 报,2006.[7]刘玉琏,傅沛仁.数学分析讲义(第三版)[M].北京:高等教育出版社,1992.[8]张雅平.二重极限的几种求法[J].雁北师范学院学报(自然科学版),2005,(2).. 10

二次极限与二重极限

定义证明二重极限

考研数学:二重极限

极限计算方法总结(简洁版)

高数_第1章_极限计算方法总结

管理的二重属性

二重的技术发展史

极限

适合男女二重表演诗朗诵

小学生数学计算方法研究课题研究论文

《二重极限的计算方法(学年论文).doc》
二重极限的计算方法(学年论文)
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载全文