证明垂直

2020-05-10 来源:证明收藏下载本文

推荐第1篇:立体几何垂直证明

立体几何专题----垂直证明

学习内容:线面垂直面面垂直

立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用三角形全等或三角行相似。(5)利用直径所对的圆周角是直角,等等。

试题探究

一、通过“平移”,根据若a//b,且b平面,则a平面

1.在四棱锥P-ABCD中,△PBC为正三角形,AB⊥平面PBC,AB∥CD,AB=

12DC,E为PD中点.求证:AE⊥平面PDC.、

2.如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,∠PDA=45°,点E为棱AB的中点. 求证:平面PCE⊥平面PCD;

3.如图所示, 四棱锥PABCD底面是直角梯形

BAAD,CDAD,CD2AB,PA底面ABCD,

E为PC的中点, PA=AD。

证明: BE平面PDC;

二、利用等腰三角形底边上的中线的性质

4、在三棱锥PABC中,ACBC2,ACB90

,APBPAB,PCAC.

(Ⅰ)求证:PCAB;

P

(Ⅱ)求二面角BAPC的大小;A

B

C

5、如图,在三棱锥PABC中,⊿PAB是等边三角形,∠PAC=∠PBC=90 º 证明:AB⊥PC

三、利用勾股定理

PACD,PA1,PD

6、

如图,四棱锥PABCD的底面是边长为1的正方形,

求证:PA平面ABCD;

_A _D

_B_C

7、如图,四面体ABCD中,O、

E分别是BD、BC的中点,

CACBCDBD2,ABAD

(1)求证:AO平面BCD;

(2)求异面直线AB与CD所成角的大小;B

E

四、利用三角形全等或三角行相似

8、正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点, 求证:D1O⊥平面MAC.9、如图,已知正四棱柱ABCD—A1B1C1D1中,

过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F, 求证:A1C⊥平面BDE;

五、利用直径所对的圆周角是直角

10、如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.(1)求证:平面PAC⊥平面PBC;

(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.P

A

11、如图,在圆锥PO中,已知PO,⊙O的直径AB2,C是狐AB的中点,D为AC的中点.证明:平面POD

平面PAC;

推荐第2篇:证明垂直习题

线面、面面垂直的判定及性质

一、选择题

1、已知两个平面垂直,下列命题

①一个平面内已知直线必垂直于另一个平面内的任意一条直线. ②一个平面内的已知直线必垂直于另一个平面的无数条直线. ③一个平面内的任一条直线必垂直于另一个平面.

④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.

其中正确的个数是() A.3B.2C.1

D.0

2、已知直线l平面,有以下几个判断:①若ml,则m//;②若m,则m//l;

③若m//,则ml;④若m//l,则m.上述判断中正确的是()

A.①②③B.②③④C.①③④D.①②④

3、直线a不垂直于平面,则内与a垂直的直线有()

A.0条 B.1条C.无数条D.内所有直线

4、在空间四边形ABCD中,若ABBC,ADCD,E为对角线AC的中点,下列判断正确的是()

A.平面ABD平面BDCB.平面ABC平面ABD C.平面ABC平面ADC

D.平面ABC平面BED

二、填空题

1、已知直线a,b和平面,且ab,a,则b与的位置关系是.

2、,是两个不同的平面,m,n是平面及之外的两条不同的直线,给出四个论断:

①mn;②;③n;④m.以其中三个论断作为条件,余下的一个论断作

为结论,写出你认为正确的一个命题.

3、设O为平行四边形ABCD对角线的交点,P为平面AC外一点且有PAPC,PBPD,则PO与平面ABCD的关系是.

第 1 页(共 6 页

三、解答题

1、如图所示,ABCD为正方形,SA平面ABCD,过A且垂直于SC的平面分别交SB,SC,SD于E,F,G.

求证:AESB,AGSD.

S

2、如图所示,四棱锥PABCD的底面是正方形,PA底面ABCD,AEPD,EF//CD,AMEF.

求证:MF⊥AB,MF⊥PC

P

A

)第 1 页(共 6 页)

3、如图,直角△ABC所在平面外一点S,且SASBSC,点D为斜边AC的中点. (1)求证:SD平面ABC;

(2)若ABBC,求证:BD面SAC.

4、如图,在正方体ABCD—A1B1C1D1中,EF⊥A1D,EF⊥AC,求证:EF∥BD1.C

1AC

A

5、已知:如图所示,平面平面,l,在l上取线段AB4,AC,

BD分别在平面和平面内,且ACAB,DBAB,AC3,BD12,求CD长.

6、如图,在四棱锥PABCD中平面PAD⊥平面ABCD,ABAD,DAB60,E,F分别是AP,AB的中点,

求证:(1)EF∥平面PCD,(2)平面BEF⊥平面PAD

7、如图,四棱锥PABCD中,底面ABCD是矩形,M,N分别为PA,BC的中点,

PD平面ABCD,PDAB

2,CD

1(1)求证:MN∥平面PCD (2)求证:MCBD

8、如图,已知AB面ACD,DE面ACD,ACAD,DE2AB,F为CD中点 (1)求证:AF∥面BCE (2)求证:面BCE

面CDE

9、如图,在四面体ABCD中,CDCB,ADBD,E,F分别是AB,BD的中点, 求证:(1)EF∥面ACD (2)面EFC

面BCD

A

10、如图,在正方体ABCD—A1B1C1D1中,E是DD1的中点, (1)求BE和面ABB1A1所成角的正弦值

(2)在棱C1D1是否存在一点F,使得B1F∥面A1BE?并证明你的结论

C1

AC

推荐第3篇:怎么证明垂直

怎么证明垂直

1、

利用勾股定理的逆定理证明

勾股定理的逆定理提供了用计算方法证明两线垂直的方法,即证明三角形其中一个角等于,由于利用代数的方法,只要能计算出待证直角的对边的平方和等于另两边的平方和即可。

2、

利用“三线合一”证明

要证二线垂直,若能证二线之一是等腰三角形的底边,另一线是等腰三角形顶角的平分线或底边上的中线,则二线互相垂直。

3、

利用直角三角形中两锐角互余证明

由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

4、

圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

5、

利用菱形的对角线互相垂直证明

菱形的对角线互相垂直。

6、

利用全等三角形证明

主要是找出两线所成的角中有两角是邻补角,并且证明这两角相等,于是就可知这两角都为,从而直线垂直.赞同

3

5|评论

1利用直角三角形中两锐角互余证明

由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

2勾股定理逆定理

3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分

线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法两条直线的方向向量数量积为0

2斜率两条直线斜率积为-1

3线面垂直,则这条直线垂直于该平面内的所有直线

一条直线垂直于三角形的两边,那么它也垂直于另外一边

4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

2高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):

Ⅰ.平行关系:

线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。

面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。

Ⅱ.垂直关系:

线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。

线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。

面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直

线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法两条直线的方向向量数量积为0

2斜率两条直线斜率积为-1

3线面垂直,则这条直线垂直于该平面内的所有直线

一条直线垂直于三角形的两边,那么它也垂直于另外一边

4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):

推荐第4篇:证明垂直位置关系

第五课时学案垂直的证明方法

命题预测

从近几年的高考试题来看,线面垂直的判定与性质、面面垂直的判定与性质等是高考的热点,题型既有选择题、填空题,又有解答题,难度中等偏高.客观题突出“小而巧”,主要考查垂直的判定及性质;主观题考查较全面,在考查上述知识的同时,还注重考查空间想象、逻辑推理以及分析问题、解决问题的能力.

预测2013年高考仍将以线面垂直、面面垂直为主要考查点,重点考查学生的空间想象以及逻辑推理能力.

考点1 直线与平面垂直的判定与性质

1、(08天津)如图,在四棱锥PABCD中,底面ABCD是矩形. 已知AB3,AD2,PA2,PD22,PAB60. (Ⅰ)证明AD平面PAB;

(Ⅱ)求异面直线PC与AD所成的角的大小; (Ⅲ)求二面角PBDA的大小.

变式1:如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.求证:(1)MD∥平面APC;(2)BC⊥平面APC.变式2:(12全国理)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,

AC=2PA=2,E是PC上的一点,PE=2EC.

(Ⅰ)证明:PC⊥平面BED;

(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.

变式3:(06福建)如图,四面体ABCD中,O、E分别是BD、BC的中点

CACBCDBD2,ABAD

(I)求证:AO平面BCD;(II)求异面直线AB与CD所成角的大小;(III)求点E到平面ACD的距离。

B

E

变式4:(11大纲理) 如图,四棱锥SABCD中, ABCD,BCCD,侧面SAB为等边三角形,ABBC2,CDSD1.

(Ⅰ)证明:SD平面SAB;(Ⅱ)求AB与平面SBC所成角的大小.

2、(08二)如图,正四棱柱ABCDA1B1C1D1中,AA12AB4,点E在CC1上

AC

1且C1E3EC.(Ⅰ)证明:A1C平面BED;(Ⅱ)求二面角A1DEB的大小.EC

3、(04湖北)在棱长为1的正方体ABCD-A1B1C1D1中,E 是棱BC的中点,点F是棱CD上的动点。(1)试确定点F的位置,使得D1E⊥平面AB1F;

(2)当D1E⊥平面AB1F时,求二面角C1―EF―A的大小。

4、(12北京理)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(I)求证:A1C⊥平面BCDE;

(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;

(III)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由

(Ⅰ)证明:面PAD⊥面PCD;

考点2平面与平面垂直的判定与性质

1、(2011〃高考江苏卷)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD, ∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD; (2)平面BEF⊥平面PAD

变式1:如图,在直三棱柱:ABC-A1B1C1中,AA1=AB=BC=3,AC=2,D是AC的中点. (1)求证:B1C∥平面A1BD;

(2)求证:平面A1BD⊥平面ACC1A1; (3)求三棱锥A-A1BD的体积.

变式2:(08湖南)如图,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.(Ⅰ)证明:平面PBE⊥平面PAB;

(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.

变式3:(09北京)如图,四棱锥PABCD的底面是正方形,

PD底面ABCD,点E在棱PB上.

(Ⅰ)求证:平面AEC平面PDB;

(Ⅱ)当PD

且E为PB的中点时,求AE与平面PDB所成

的角的大小.

变式4:(05)已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,DAB90

,PA底面ABCD,

且PA=AD=DC=

1

2AB=1,M是PB的中点。

(Ⅱ)求AC与PB所成的角;

(Ⅲ)求面AMC与面BMC所成二面角的大小。

2、(12高考江苏)如图,在直三棱柱ABCA1B1C1中,A1B1A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且ADDE,F为B1C1的中点. 求证:(1)平面ADE平面BCC1B1;(2)直线A1F//平面ADE.

变式:(11辽宁理) 如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2PD. (I)证明:平面PQC⊥平面DCQ; (II)求二面角Q—BP—C的余弦值.

3、如图,四棱锥P-ABCD中,底面ABCD是∠DAB=60°的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)求证:AD⊥PB;(2)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明你的结论.

推荐第5篇:证明平行与垂直

§9.8 立体几何中的向量方法Ⅰ——证明

平行与垂直

(时间:45分钟 满分:100分)

一、选择题(每小题7分,共35分)

1.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若a

a分别与AB,AC垂

直,则向量a为

A.1,1,1

B.-1,-1,-1

C.1,1,1或-1,-1,-1

D.1,-1,1或-1,1,-1,

2.已知a=1,1,1,b=0,2,-1,c=ma+nb+4,-4,1.若c与a及b都垂直,则m,n的值分别为,

A.-1,2B.1,-2C.1,2D.-1,-

23.已知a=1,,,b=3,,

A352215满足a∥b,则λ等于 22992.B.C.-D.- 32234.已知AB=1,5,-2,BC=3,1,z,若AB⊥BC,BP=x-1,y,-3,且BP⊥平面ABC,则实数x,y,z分别为A.15401533,-,4B.,-,4 77774040,-2,4D.4,,-15 77C.5.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是,

A.a=1,0,0,n=-2,0,0

B.a=1,3,5,n=1,0,1

C.a=0,2,1,n=-1,0,-1

D.a=1,-1,3,n=0,3,1

二、填空题每小题6分,共24分

6.设a=1,2,0,b=1,0,1,则“c=(

的条件.7.若|a|

b=1,2,-2,c=2,3,6,且a⊥b,a⊥c,则a=.,

8.如图,正方体ABCD—A1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为

212,,)”是“c⊥a,c⊥b且c为单位向量”33

39.设A是空间任一点,n为空间内任一非零向量,则适合条件AM·n=0的点M的轨迹

是.三、解答题共41分

10.(13分)已知正方体ABCD-A1B1C1D1中,M、N分别为BB

1、C1D1的中点,建立适当的

坐标系,求平面AMN的一个法向量.

11.(14分)如图,已知ABCD—A1B1C1D1是棱长为3的正

方体,点E在AA1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;

2(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,

3垂足为H,求证:EM⊥面BCC1B1.

12.(14分)如图所示,已知正方形ABCD和矩形ACEF所在的平

面互相垂直,AB2,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;

(2)AM⊥平面BDF.

答案

1.C2.A3.B4.B5.D

6.充分不必要7.118118,2,或,2,8.1 555

5.9.过A点且以n为法向量的平面

10.解 以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系如图所示.,

设正方体ABCD—A1B1C1D1的棱长为1,则A1,0,0,M (1,1,11),N (0,,1)).2211∴AM1,0,,AN0,,1设平面AMN的一个法向量为n=x,y,z, 22

1nAMyz02 1nANxyz0

2令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).

∴(-3,2,-4)为平面AMN的一个法向量.

11.证明 建立如图所示的坐标系,则BE=(3,0,1),

→BF=(0,3,2),BD1=(3,3,3).

→→所以BD1=BE+BF,故BD1,BE,BF共面.

又它们有公共点B,

所以E、B、F、D1四点共面.

(2)如图,设M(0,0,z),

2→0,-z,而BF=(0,3,2), GM=3

得z=1.→2由题设得GMBF=3z20,

3因为M(0,0,1),E(3,0,1),所以ME=(3,0,0).

→→又BB1=(0,0,3),BC=(0,3,0),

→→→→所以ME·BB1=0,ME·BC=0,

从而ME⊥BB1,ME⊥BC.又BB1∩BC=B,

故ME⊥平面BCC1B1.

12 证明 (1)建立如图所示的空间直角坐标系,

设AC∩BD=N,连接NE.

则点N、E的坐标分别为 

,0、(0,0,1).

22

∴NE=-1.22

又点A、M的坐标分别是2,2,0)、2222→,AM=-,1.,,1,2222→∴NE=AM且NE与AM不共线.∴NE∥AM.

又∵NE⊂平面BDE,AM⊄平面BDE,

∴AM∥平面BDE.

22→(2)由(1)知AM=1,∵D(2,0,0),F2,2,1), 22

DF=(0,2,1).

→→→→AM·DF=0.∴AM⊥DF.

→→同理AM⊥BF,又DF∩BF=F,∴AM⊥平面BDF.

推荐第6篇:如何证明面面垂直

如何证明面面垂直

设p是三角形ABC所在平面外的一点,p到A,B,C三点的距离相等,角BAC为直角,求证:平面pCB垂直平面ABC

过p作pQ⊥面ABC于Q,则Q为p在面ABC的投影,因为p到A,B,C的距离相等,所以有QA=QB=QC,即Q为三角形ABC的中心,因为角BAC为直,所以Q在线段BC上,所以在面pCB上有线段pQ⊥平面ABC,故平面pCB⊥平面ABC

2证明一个面上的一条线垂直另一个面;首先可以转化成

一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面

然后转化成

一条直线垂直于另一个平面内的两条相交直线

也可以运用两个面的法向量互相垂直。

这是解析几何的方法。

2一、初中部分

1利用直角三角形中两锐角互余证明

由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

2勾股定理逆定理

3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分

线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法两条直线的方向向量数量积为0

2斜率两条直线斜率积为-1

3线面垂直,则这条直线垂直于该平面内的所有直线

一条直线垂直于三角形的两边,那么它也垂直于另外一边

4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):

Ⅰ.平行关系:

线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。

面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。

Ⅱ.垂直关系:

线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。

线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。

面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。

推荐第7篇:《垂直关系证明》专题

《垂直关系》

1、如图1,在正方体ABCDA1B1C1D1中,M为CC1 的中点,AC交BD于点O,求证:AO

平面MBD.

1例

2、如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.

求证:BC⊥平面PAC.

SA⊥平面ABCD,例

3、如图1所示,ABCD为正方形,过A且垂直于SC的平面分别交SB,SC,SD于E,F,G.

求证:AESB,AGSD.

4、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,

作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.

5、如图3,AB是圆O的直径,C是圆周上一点,PA平面ABC.若AE⊥PC ,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.

6、如图9—40,在三棱锥S—ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC

图9—40

7、如图9—41,PA⊥平面ABCD,四边形ABCD是矩形,PA=AD=a,M、N分别是AB、PC的中点.求证:平面MND⊥平面PCD

8、如图9—42,正方体ABCD—A1B1C1D1中,E、F、M、N分别是A1B

1、BC、C1D

1、B1C1的中点.求证:平面MNF⊥平面ENF.

图9—

42《垂直关系》专题练习

1、如图所示,三棱锥V-ABC中,AH⊥侧面VBC,且H是△VBC的垂心,BE是VC边上的高.求证:VC⊥AB;

2、如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.

(3)若∠PDA=45°,求证:MN⊥平面PCD.

3、已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.

4、如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.求证:NP⊥平面ABCD.5、如图,在正方体ABCD-A1B1C1D1 中.求证:平面ACD1 ⊥平面BB1D1D

DA

1DA

C1

C

6、如图9—45,四棱锥P—ABCD的底面是边长为a的正方形,PA⊥底面ABCD,E为AB的中点,且PA=AB.求证:平面PCE⊥平面PCD

图9—4

57、如图,三棱锥PABC中,PA⊥平面ABC,平面PAC⊥平面PBC.问△ABC是否为直角三角形,若是,请给出证明;若不是,请举出反例.BA

C

推荐第8篇:证明两条直线垂直

证明两条直线垂直

根据定义推

线线垂直←→线面垂直←→面面垂直

线线平行←→线面平行←→面面平行

就这样

还是得实际操作

1利用直角三角形中两锐角互余证明

由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

2勾股定理逆定理

3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分

线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法两条直线的方向向量数量积为0

2斜率两条直线斜率积为-1

3线面垂直,则这条直线垂直于该平面内的所有直线

一条直线垂直于三角形的两边,那么它也垂直于另外一边

4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

2高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):

Ⅰ.平行关系:

线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。

面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。

Ⅱ.垂直关系:

线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。

线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。

面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直

线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法两条直线的方向向量数量积为0

2斜率两条直线斜率积为-1

3线面垂直,则这条直线垂直于该平面内的所有直线

一条直线垂直于三角形的两边,那么它也垂直于另外一边

4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):

推荐第9篇:面面垂直证明例题

数学面面垂直例题

例4答案:

例8答案:取AC的中点为O,连接OP、OB。 AO=OC,PA=PC,故PO垂直

AC

推荐第10篇:怎样证明面面垂直

怎样证明面面垂直

如果一平面经过另一平面的垂线,那么这两个平面垂直。(面面垂直判定定理)

为方便,下面#后的代表向量。

#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD

两组对边平方和分别为:

AB2+CD2=AB2+(#BD-#BC)2=AB2+BD2+BC2-2#BD·#BC

AD2+BC2=(#BD-#BA)2+BC2=BD2+BA2+BC2-2#BD·#BA

则AB2+CD2=AD2+BC2等价于#BD·#BC=#BD·#BA等价于#AC·#BD=0

所以原命题成立,空间四边形对角线垂直的充要条件是两组对边的平方和相等

证明一个面上的一条线垂直另一个面;首先可以转化成

一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面

然后转化成

一条直线垂直于另一个平面内的两条相交直线

也可以运用两个面的法向量互相垂直。

这是解析几何的方法。

2一、初中部分

1利用直角三角形中两锐角互余证明

由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

2勾股定理逆定理

3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分

线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

如果一平面经过另一平面的垂线,那么这两个平面垂直。(面面垂直判定定理)

1向量法两条直线的方向向量数量积为0

2斜率两条直线斜率积为-1

3线面垂直,则这条直线垂直于该平面内的所有直线

一条直线垂直于三角形的两边,那么它也垂直于另外一边

4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):

Ⅰ.平行关系:

线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。

面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。

Ⅱ.垂直关系:

线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。

线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。

面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。

第11篇:利用全等证明垂直问题

利用全等证明垂直问题

1.如图,AD⊥BC于D,AD=BD,DE=DC。猜想并证明BE和AC有何关系?

图19

2.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。猜想 AD与AG的关系,并证明。A G

FE

B

C

作业:1.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E、F,连接EF,EF与AD交于G,AD与EG垂直吗?证明你的结论。(6分)

2.如图, 已知: 等腰Rt△OAB中,∠AOB=900, 等腰Rt△EOF中,∠EOF=900, 连结AE、BF.求证: (1) AE=BF;(2) AE⊥BF.3.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.

C

1图

2利用全等证明线段的相等以及和、差、倍、分问题

1.如图,△ABC中,AB=AC,D是AB上一个动点,DF⊥BC于点F,交CA延长线于点E,

(1)试判断AD、AE的大小关系,并说明理由;(2)当点D在BA的延长线上时,其他条件不变,(1)中的结论是否还成立?请说明理由。

F

备用图

2.在△ABC中,∠C=90°,AC=BC,过点C在△ABC的外部作直线MN(如图(1)), AM⊥MN于M,BN⊥MN于N。(1)求证:MN=AM+BN。(2)若将条件改为“过点C 在△ABC内作直线MN”,其它条件不变,问结论(1)是否仍然成立?如不成立, 它们之间又满足怎么的关系,请画出图形并证明。

M

C

N

A

B

3.如图23,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.⑴求证:BG=CF ⑵请你判断BE+CF与EF的大小关系,并说明理由。

4.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB+BD与DE的长度有什么关系?

并加以证明。(10分)A

BDCE5.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,

F分为AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.

4.如图在AFD和CEB中,点A,E,F,C在同一条直线上

D

有下面四个论断:(1)AD =CB , (2)AE =CF , (3)B

一道数学问题,并写出解答过程.利用全等证明角的相等以及和、差、倍、分问题

1.如图22⑴,AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相

交于点M、N,那么∠1与∠2有什么关系?请说明理由。

若过O点的直线旋转至图⑵、⑶的情况,其余条件不变,那么图⑴中的∠1与∠2的关系成立吗?请说明理由。

(4)AD //BC .请用其中三个作为条件,余下一个作为结论,编

2.(2007年绵阳市)如图,△ABC中,E、F① AD平分∠BAC,② DE⊥AB,DF⊥AC,

③ AD⊥EF.以此三个中的两个为条件,另一个为结论,可构成三个命题,

即:

①②  ③,①③  ②,②③  ①.

(1)试判断上述三个命题是否正确(直接作答); (2)请证明你认为正确的命题.

22.如图,给出五个等量关系:①ADBC ②ACBD ③CEDE ④DC⑤DABCBA.请你以其中两个为条件,另三个中的一个为结论,推出一个

正确

的结论(只需写出一种情况),并加以证明.

已知:

求证:证明:

22.如图,给出五个等量关系:①ADBC ②ACBD ③C

EDE AM④DC

17.本题9分,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的: ①分别在BA和CA上取BECG; ②在BC上取BDCF;

③量出DE的长a米,FG的长b米.

如果ab,则说明∠B和∠C是相等的.他的这种做法合理吗?为什么? ⑤DABCBA.请你以其中两个为条件,另三个中的一个为结论, 推出一个正确的结论(只需写出一种情况),并加以证明.8

分 O N B

已知: E

求证:

证明:

B

16.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠.

A B

22.如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达E

和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使EC=CB,图9

A

连结DE,量出DE的长,就是A、B的距离.写出你的证明.

D

F

第12篇:平行与垂直的证明

立体几何中平行与垂直的证明

1.已知正方体ABCD—A1B1C1D1,O是底ABCD对角线的交点. 求证:(1)C1O//平面AB1D1;(2)A1C⊥平面AB1D1.

ADBC

1D

B

C

2.如图,在长方体ABCDA1B1C1D1中,ADAA11,AB1, 点E在棱AB上移动。求证:D1E⊥A1D;

3.如图平面ABCD⊥平面ABEF, ABCD是正方形,ABEF是矩形, 且AF

A

E

B

C

AD2,G是EF的中点,

2(1)求证平面AGC⊥平面BGC;(2)求空间四边形AGBC的体积。

4.如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABCA1B1C1中,

AB8,AC6,BC10,D是BC边的中点.(Ⅰ)求证:

5.如图组合体中,三棱柱ABCA1B1C1的侧面ABB1A1 是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合一个点.(Ⅰ)求证:无论点C如何运动,平面A1BC平面A1AC;

(Ⅱ)当点C是弧AB的中点时,求四棱锥A1BCC1B1与圆柱的体积比.

6.如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F 为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;

(2)设M在线段AB上,且满足AM=2MB,试在线段CE

上确定一点N,使得MN∥平面DAE.7.如图,在棱长为1的正方体ABCDA1B1C1D1中: (1) 求异面直线BC1与AA1所成的角的大小; (2) 求三棱锥B

1A1C

1B的体积;。 (3) 求证:B1D

平面A1C1B

ABA1C;(Ⅱ)求证:AC1∥ 面AB1D;

8. 如图:S是平行四边形ABCD平面外一点,M,N分别是

SA,BD上的点,且

AMBN

=,求证:MN//平面SBC SMND

P

9. 如图,在底面为平行四边形的四棱锥P-ABCD中, AB⊥AC,PA⊥平面ABCD,点E是PD的中点.

(Ⅰ)求证:AC⊥PB; (Ⅱ)求证:PB∥平面AEC.

E

A

B

D C

10.在多面体ABCDEF中,点O是矩形ABCD的对角线的交点,平面CDE是等边三角形,棱EF//BC且EF=

BC.

2(I)证明:FO∥平面CDE;

(II)设BC=CD,证明EO⊥平面CDF.

11. 如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱 PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.

(Ⅰ)证明PA//平面EDB;(Ⅱ)证明PB⊥平面EFD.

12.如图,四棱锥PABCD中,PA底面ABCD,

ABAD,ACCD,ABC60,PAABBC, E是PC的中点.

(1)求证:CDAE;(2)求证:PD面ABE.

13.如图在三棱锥PABC中,PA平面ABC,

C E

C

P

B

A

DB

_P

ABBCCA3,M为AB的中点,四点P、A、M、C

都在球O的球面上。

(1)证明:平面PAB平面PCM; (2)证明:线段PC的中点为球O的球心;

14.如图,在四棱锥SABCD中,SAAB2,SBSD ABCD是菱形,且ABC60,E为CD的中点.

(1)证明:CD平面SAE;

(2)侧棱SB上是否存在点F,使得CF//平面SAE?并证明你的结论.

_A_C

_M

_B

D

C

课后练习

1.如图所示,在直三棱柱ABC—A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。 (I)求证:B1C//平面A1BD; (II)求证:B1C1⊥平面ABB1A

(III)设E是CC1上一点,试确定E的位置,使平面A1BD⊥平面 BDE,并说明理由。

2.如图,已知AB平面ACD,DE平面ACD,三角形ACD 为等边三角形,ADDE2AB,F为CD的中点 (1)求证:AF//平面BCE;

(2)求证:平面BCE平面CDE;

1. 如图,四棱锥P—ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直 角梯形,∠ABC=∠BAD=90°,PA=BC=

AD.2

(I)求证:平面PAC⊥平面PCD;

(II)在棱PD上是否存在一点E,使CE∥平面PAB?若 存在,请确定E点的位置;若不存在,请说明理由.

5.如图,在四棱锥SABCD中,SAAB

2,SBSD底面ABCD是菱形,且ABC60,

E为CD的中点.

(1)证明:CD平面SAE;

(2)侧棱SB上是否存在点F,使得CF//平面SAE?并证明你的结论.

D

C

【课后记】 1.设计思路 (1)两课时;

(2)认识棱柱与棱锥之间的内在联系; (3)掌握探寻几何证明的思路和方法; (4)强调书写的规范性 2.实际效果:

(1)用时两节半课;

(2)平行掌握的比较好,但垂直问题需要继续加强。尤其是面面垂直问题转化为线面垂直后便不知所措。

第13篇:证明两直线垂直的方法

证明两直线垂直的方法

1.矩形四个内角

2.三角形中的两角之和为90°,则另一角必为直角

3.证明两直线中的一条是等腰三角形的底边,另一边是顶角平分线或底边上的中线

4.勾股定理逆定理

5.圆直径所对的圆周角

6.垂径定理的判定

7.利用菱形的对角线互相垂直

8.利用正方形的对角线互相垂直

9.圆的切线垂直于过切点的半径

10.证这两直线中的一直线与第三直线平行,另一直线与第三直线垂直;或证明这两直线各与已知的两垂线平行

11.相交两圆的连心线垂直平分公共弦

12.轴对称那类的图形,对应点垂直于轴

13.到线段两边距离相等的点在这个线段的中垂线上

14.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

15.与直角三角形相似的三角形 对应角是直角

16.与直角三角形全等的三角形 对应角是直角

17.利用邻角相等:两直线相交所成的两个邻角相等,可确定两直线垂直

18.点到直线最短的线段

19.45圆周角所对的圆心角

20.等边三角形中,任一顶点与内心所在直线垂直于底边

21.利用已知的直角或其余角:证两直线的夹角等于已知的直角,或证明两直线的夹角是两锐角互余的三角形的第三角

22.矩形中位线垂直他所在的两边

23.利用反证法、同一法

24.平面直角坐标系x、y轴垂直

第14篇:证明线面垂直的三步法

证明线面垂直的万能法则

王霖普

方法1

一条线垂直于平面内的两条直线

(构建等腰三角形高,勾股定理,三角形组相似产生互余角,或三角函数值证明相似,求出三角形中两角的三角函数值,若不是特殊值可能用到诱导公式,致使令一角为90度

方法2

三垂线定理

(1)与上面的法则配合使用

(2)射影定理继而构建三垂线定理

(3)由线面角,面面角诱导线面垂直

看边角关系就是看是否构成直角或等腰的情况

第15篇:Z证明直线垂直的方法

证明直线垂直的方法

(一)相交线与平行线:

①两条直线相交所成的四个角中,有一个角是直角,则这两条直线互相垂直。 ②两平行线中有一条垂直第三直线,则另一条也垂直第三直线 。

(二)三角形:

①直角三角形的两直角边互相垂直。

②三角形的两内角互余,则第三个内角为直角。

③三角形一边上的中线等于这条边的一半,则这边所对的内角为直角(图1)。

④三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。 ⑤三角形(或多边形)一边上的高垂直于这条边。

⑥等腰三角形顶角的平分线、或底边上的中线垂直于底边。

(三)四边形:

①矩形的两邻边互相垂直。

②菱形的两对角线互相帮助垂直。

(四)圆:

①平分弦(非直径)的直径垂直于这条弦,平分弦所对的弧的直径垂直于这条弦。 ②半圆或直径所对的圆周角是直角(图2)。

③圆的切线垂直于过切点的半径。

④相交现圆的连心线垂直于两圆的公共弦。

证明直线平行的方法

(一)平行线与相交线:

①在同一平面内两条不相交的直线平行。

②同平行、或同垂直于第三直线 的两条直线平行。

③同位角相等、或内错角相等、或外错角相等、或同旁内角互补、或同旁外角互补的两条直线平行。

(二)三角形:

①三角形的中位线平行于第三边。

②一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边(图

3、4)。

(三)四边形:

①平行四边形的对边平行。

②梯形的两底边平行。

③梯形的中位线平行于两底。

(四)圆:

①夹两等弧且在圆内不相交的二弦平行(图5)。

②二等圆的两条外公切线平行。

第16篇:传统方法证明平行与垂直

立体几何——证明平行与垂直

证明平行

Ⅰ、线面平行:证明线面平行就证明线平行于面内线。(数学语言)

性质:直线a与平面α平行,过直线a的某一平面,若与平面α相交,则直线a就平行于这条交线。 Ⅱ、面面平行:证明面面平行,只需证明一个面内有一组相交线与另一平面平行。(数学语言) 性质:两平行平面与第三个平面相交则两交线平行。

可看出线线平行是证明平行中的基础。

Ⅲ、证明线线平行的方法:中位线法、平行四边形法。

这两种方法的应用在证明线面平行中表现的尤为突出。具体如下:

证明线面平形关键是找到平面内与线平行的那条线。我们的方法是将所证直线朝所证平面的端点或中点平移得到与直线平行的直线,根据得到直线与原直线长为2倍关系还是相等决定在说明线线平行时用中位线法还是平行四边形法。 (1) 中位线法 (正方形)

(2012浙江)如图,在四棱锥P—ABCD中,底面是边长为BAD=120°,且PA⊥

平面ABCD,PA=M,N分别为PB,PD的中点. 证明:MN∥平面ABCD;

A'B'C',ACAA',点M,NBAC90(2012 辽宁)如图,直三棱柱ABC,AB

'B和B'C'的中心。 分别为A

//平面A'ACC'(I)证明:MN;

BC'

B

C

'MNC(II)若二面角A为直二面角,求的值。

在中位线法中由底边与中位线端点连线延长线的交点确定用到的三角形。 (2)平行四边形法 (45套D5套)

(2010安徽) 如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EFFB,AB2EF,BFC90,BFFC,H为BC的中点。

EF

DC

A

求证:FH∥平面EDB;

(2010北京) 如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥

,CE=EF=1.求证:AF∥平面BDE;

通过证明另一组对边平行且相等来证四边形为平行四边形,通过证另一组对边平行且等于第三条线的一半来证明其平行且相等。

证明垂直

Ⅰ、线面垂直:证线垂直于面就证明线垂直于面内一组相交线。(数学语言)

性质:若直线a垂直于平面α则a垂直于α内的所有直线。(证明异面直线平行)

1、如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,

证明:BD⊥平面PAC。

如图,直三棱柱ABC-A1B1C1中,AC=BC=

中点,DC1⊥BD。

(1) 证明:DC1⊥平面BCD;

12AA1,D是棱AA1的

2Ⅱ、面面垂直:证面面垂直就证面内有一条线垂直于另一平面。(数学语言) 性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

Ⅲ、证明线线垂直的方法(证明异面直线垂直)

(1)由线面垂直的性质(即证线垂直于线就证线垂直于线所在的一个面)

(2012天津)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD, AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

证明PC⊥AD;

DP

(2012·安徽卷)平面图形ABB1A1C1C如图1-4(1)所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C15.

证明:AA1⊥BC

(2)勾股定理(证明共面直线垂直) (11年大纲全国)如图,棱锥SABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1。

证明:SD⊥平面SAB;

第17篇:空间几何——平行与垂直证明

三、“平行关系”常见证明方法

(一)直线与直线平行的证明

1) 利用某些平面图形的特性:如平行四边形的对边互相平行

2) 利用三角形中位线性质

3) 利用空间平行线的传递性(即公理4):

平行于同一条直线的两条直线互相平行。

4) 利用直线与平面平行的性质定理: a∥ca∥bb∥c

如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

a∥

aβ a a∥

b

α b b

5) 利用平面与平面平行的性质定理:

如果两个平行平面同时和第三个平面相交,那么它们的交线平行.//aa//b



b

6) 利用直线与平面垂直的性质定理:

垂直于同一个平面的两条直线互相平行。

baa∥

b7) 利用平面内直线与直线垂直的性质:

8) 利用定义:在同一个平面内且两条直线没有公共点

(二)直线与平面平行的证明

1) 利用直线与平面平行的判定定理:

平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。

ab

a∥

b

a∥b

2) 利用平面与平面平行的性质推论:

两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。

a

∥

a∥

a

β

3) 利用定义:直线在平面外,且直线与平面没有公共点

(二)平面与平面平行的证明

常见证明方法:

1) 利用平面与平面平行的判定定理:

一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

a⊂b⊂a∩bPa//b//

//

b

2) 利用某些空间几何体的特性:如正方体的上下底面互相平行等 3) 利用定义:两个平面没有公共点

三、“垂直关系”常见证明方法

(一)直线与直线垂直的证明

1) 利用某些平面图形的特性:如直角三角形的两条直角边互相垂直等。 2) 看夹角:两条共(异)面直线的夹角为90°,则两直线互相垂直。 3) 利用直线与平面垂直的性质:

如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。

a

b

ba

b

a

4) 利用平面与平面垂直的性质推论:

如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这两条直线互相垂直。

l

abalbl

a

b

5) 利用常用结论:

① 如果两条直线互相平行,且其中一条直线垂直于第三条直线,则另

一条直线也垂直于第三条直线。

a∥b

ac

b

c

② 如果有一条直线垂直于一个平面,另一条直线平行于此平面,那么

这两条直线互相垂直。

a

b∥

ab

b

(二)直线与平面垂直的证明

1) 利用某些空间几何体的特性:如长方体侧棱垂直于底面等

2) 看直线与平面所成的角:如果直线与平面所成的角是直角,则这条直线垂

直于此平面。

3) 利用直线与平面垂直的判定定理:

ababAlalb



l

l

b

A

a

4) 利用平面与平面垂直的性质定理:

两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

l

aal



a

l

5) 利用常用结论:

a∥bb

a

② 两个平面平行,一直线垂直于其中一个平面,则该直线也垂直于另一

个平面。

∥

a

a

(三)平面与平面垂直的证明

1) 利用某些空间几何体的特性:如长方体侧面垂直于底面等

2) 看二面角:两个平面相交,如果它们所成的二面角是直二面角(即平面角

是直角的二面角),就说这连个平面互相垂直。 3) 利用平面与平面垂直的判定定理

一个平面过另一个平面的垂线,则这两个平面垂直。

aa



a

第18篇:证明线面垂直的专项练习

线面垂直

1:(本小题满分13分)(09广东 文)

某高速公路收费站入口处的安全标识墩如图4所示。墩的上半部分是正四棱锥PEFGH,下半部分是长方体ABCDEFGH。图

5、图6分别是该标识墩的正(主)视图和俯视图。

(1)请画出该安全标识墩的侧(左)视图;

(3)证明:直线BD平面PEG.w.w.w..s.5.u.c.o.m (2)求该安全标识墩的体积;(64000)

2、(09广东 理数)如图6,已知正方体ABCDA1B1C1D1的棱长为2,点E是正方形BCC1B1的中心,点F、G分别是棱C1D1,AA1的中点.设点E1,G1分别是点E、G在平面

DCC1D1内的正投影.

(1)求以E为顶点,以四边形FGAE在平面DCC1D1内的正投影为底面边

界的棱锥的体积;

(2)证明:直线FG1平面FEE1;

(3)求异面直线E1G1与EA所成角的正弦值()

33、.(11广东 理)如图5,在椎体PABCD中,ABCD是边长为1的棱形,且DAB

600,PAPDPB2,E,F分别是BC,PC的中点,

(1) 证明:AD平面DEF

(2)求二面角PADB的余弦值。(

21) 7

14.(11湖南 文 12分)在圆锥PO

中,已知POO的

直径AB2,点C在AB上,且CAB=30,D为AC的中点.(Ⅰ)证明:AC平面POD;

(Ⅱ)求直线 OC平面PAC所成角的正弦值.(

35.(11北京 理)

如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是菱形,AB=2,BAD60 (1)求证:BD平面PAC

(2)PA=AB,求PB与AC所成的角的余弦值。

(3)当平面PBC与平面PDC垂直时,求PA 的长(PA

6)

6.(本小题满分12分)(11褔建 文)

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。(I)求证:CE⊥平面PAD;

(11)若PA=AB=1,AD=3,

,∠CDA=45°, (12)求四棱锥P-ABCD的体积(

7.(本小题满分12分)(11天津 文)

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,

AD=,∠BAD=∠CDA=45°.(Ⅰ)求异面直线CE与AF所成角的余弦值;(Ⅱ)证明CD⊥平面ABF; (Ⅲ)求二面角B-EF-A的正切值。

5) 6

线面垂直

8、如图,四棱锥P

的底面是边长为1的正方形,

PACD,PA1,PD

(Ⅰ)求证:PA平面ABCD;

(Ⅱ)求四棱锥PABCD的体积.(Ⅲ)求直线PB与底面ABCD所成角的大小.9、已知三棱锥P—ABC中,PC底面ABC,AB=BC,D、F分别

为AC、PC的中点,DEAP于E。(1)求证:AP平面BDE;

(2)求证:平面BDE平面BDF;

(3)若AE:EP=1:2,求截面BEF分三棱锥P—ABC所成上、下两部分的体积比。

10、四棱锥P-ABCD中,底面ABCD是正方形,边长为a,PD=a,

_ A

_C

_D

PA=PC=2a,

(1)求证:PD⊥平面ABCD;(2)求证,直线PB与AC垂直;(3)求二面角A-PB-D的大小.

11.如图,已知两个正四棱锥PABCD与QABCD的高分别为1和2,AB4.

P

(1) 证明PQ平面ABCD; (2) 求异面直线AQ与PB所成的角; (3) 求点P到平面QAD的距离.12.(2012年广东理 13分)

Q

如图5所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点 E在线段PC上,PC⊥平面BDE。

(1) 证明:BD⊥平面PAC;

(2) 若PA=1,AD=2,求二面角B-PC-A的正切值;(tan3)

13.(2012

江西理12分)

在三棱柱ABC-A1B1C1中,已知AB=AC=AA1BC=4,在A1在底面ABC的投影是线段BC的中点O。

(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;

(2)求平面A1B1C与平面BB1C1C夹角的余弦值。

14.如图,四棱锥P-ABCD中,底面ABCD为菱形,PA底面ABCD,

AC=22,PA=2,E是PC上的一点,2PE=EC。

(I) 证明PC平面BED;

(II) 设二面角A-PB-C为90°,求PD与平面PBC所成角的

大小

15.(本小题满分13分)(11广东 文)

图5所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的.A,A′,B,B′分别为

\'

CD,C\'D\',DE,D\'E\'的中点,O1,O1\',O2,O2分别为

CD,C\'D\',DE,D\'E\'的中点.

(1)证明:O1,A,O2,B四点共面;

\'\'

(2)设G为A A′中点,延长AO1到H′,使得O1HAO1.证明:BO2平面HBG

\'

\'

\'

\'

\'

\'\'

\'

\'

\'

18(本小题满分4分)(13广东 理)

如图5,在等腰直角三角形ABC中,∠A =900BC=6,D,E分别是AC,

AB上的点,CD=BE=

误!未找到引用源。

,O为BC的中点.将△ADE沿DE折起,得到如图6所示的四棱椎A’-BCDE,其中A’O=?3

1)

证明:A’O⊥平面BCDE;

(2) 求二面角A’-CD-B的平面角的余弦值.

第19篇:线线、线面平行垂直的证明

空间线面、面面平行垂直的证明

12.在正方体ABCD-A1B1C1D1中,E、F分别为AB、BC的中点, (Ⅰ)求证:EF//面A1C1B。 (Ⅱ)B1D⊥面A1C1B。

D\'

3.如图,在正方形ABCDA\'B\'C\'D\',

A\'(1)求证:A\'B//平面ACD\';

(2)求证:平面ACD\'平面DD\'B。

A

4.如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证: (1)FD∥平面ABC; (2)AF⊥平面EDB.

C\'

C

B

5.如图,在正方体ABCDA1B1C1D1中,O是AC和BD的交点.求证: (Ⅰ)OC1∥平面AB1D1; (Ⅱ)平面ACC1平面AB1D1.

DA

C1

C

(5题图)

6.如图,长方体ABCDA1B1C1D1中,ABAD1,AA12,点P为

DD1的中点。

(1)求三棱锥DPAC的体积; (2)求证:直线BD1∥平面PAC; (3)求证:直线PB1平面PAC.

C1

D1

B1

A1

P

DC

B

A

7.如图,在四棱锥PABCD,底面ABCD是正方形,侧棱

PD底面ABCD,PDDC,E是PC的中点,作EFPB于点F。

(1)证明:PA//平面EDB;(2)证明:DEBC

(3)证明:PB平面EFD。

8.ABCDA1B1C1D1是长方体,底面ABCD是边长为1的正方形,侧棱

A

AA12,E是侧棱BB1的中点.

(Ⅰ)求证:AE平面A1D1E;

(Ⅱ) 求三棱锥AC1D1E的体积.

第20篇:证明空间线面平行与垂直

证明空间平行与垂直

 知识梳理

一、直线与平面平行

1.判定方法

(1)定义法:直线与平面无公共点。

(2)判定定理: a

ba//ba//

//

(3)其他方法:a//a

a//

2.性质定理:a

 a//b

b

二、平面与平面平行

1.判定方法

(1)定义法:两平面无公共点。

a//

b//

(2)判定定理:a //

b

abP

(3)其他方法:aa// //;// a//

//

2.性质定理:a a//b

b

三、直线与平面垂直

(1)定义:如果一条直线与一个平面内的所有直线都垂直,则这条直线和这个平面垂直。

(2)判定方法

① 用定义.abac

② 判定定理:bcAa

b

c

a

③ 推论: b

a//b

(3)性质 ①

aa

ab②a//bbb

四、平面与平面垂直

(1)定义:两个平面相交,如果它们所成的二面角是直线二面角,就说这两个平面互相垂直。

a

(2)判定定理 

a

(3)性质

l

①性质定理

a

al

l②Al

P

PA垂足为A④PA

PPA

 “转化思想”

面面平行线面平行 线线平行 面面垂直线面垂直 线线垂直

例题1.如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:AC⊥BC1;(II)求证:AC 1//平面CDB1;例

题2.如图,在棱长为2的正方体

ABCDA1B1C1D1中,O为BD1的中点,M为BC的中点,N为AB

的中点,P为BB1的中点.(I)求证:BD1B1C;(II)求证BD1平面MNP;

例题3.如图,在三棱锥VABC中,VC⊥底面ABC,AC⊥BC,D是AB的

中点,且ACBCa,∠VDC0(I)求证:平面VAB⊥平面VCD;



π. 2

π

(II)试确定角的值,使得直线BC与平面VAB所成的角为.

6

例题4.(福建省福州三中2008届高三第三次月考)如图,正三棱柱ABCA1B1C1的所有棱长都是2,D是棱AC的中点,E是棱CC1的中点,AE交A1D于点H.

BB

(1)求证:AE平面A1BD;

(2)求二面角DBA1A的大小(用反三角函数表示);

A1

CHA

C

《证明垂直.doc》
证明垂直
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

相关推荐

祝福语实习报告辞职报告策划书口号检讨书介绍信导游词社会实践报告求职信协议书委托书证明承诺书自我介绍自我评价自我鉴定广告词申请书活动方案
下载全文